Skip to main content

An Adaptive Position Synchronization Controller Using Orthogonal Neural Network for 3-DOF Planar Parallel Manipulators

  • Conference paper
  • First Online:
  • 2374 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10363))

Abstract

This paper proposes an adaptive position synchronization controller using orthogonal neural network for 3-DOF planar parallel manipulators. The controller is designed based on the combination of computed torque method with position synchronization technique and orthogonal neural network. By using the orthogonal neural network with online turning gains can overcome the drawbacks of the traditional feedforward neural network such as initial values of weights, number of processing elements, slow convergence speed and the difficulty of choosing learning rate. To evaluate the effectiveness of the proposed control strategy, simulations were conducted by using the combination of SimMechanics and Solidworks. The tracking control results of the parallel manipulators were significantly improved in comparison with the performance when applying non-synchronization controllers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koren, Y.: Cross-coupled biaxial computer control for manufacturing systems. J. Dyn. Syst. Meas. Control 102, 265 (1980)

    Article  MATH  Google Scholar 

  2. Feng, L., Koren, Y., Borenstein, J.: Cross-coupling motion controller for mobile robot. IEEE Control Syst. 13, 35–43 (1993)

    Article  Google Scholar 

  3. Ren, L., Mills, J.K., Sun, D.: Controller design applied to planar parallel manipulator for trajectory tracking robot. In: Proceeding of the 2005 IEEE International Conference on Robotics and Automation (2005). doi:10.1109/ROBOT.2005.1570242

  4. Ren, L., Mills, J.K., Sun, D.: Experimental comparison of control approaches on trajectory tracking control of a 3 DOF parallel robot. IEEE Trans. Control Syst. Technol. 15(5), 982–988 (2007)

    Article  Google Scholar 

  5. Liu, Y.-C., Chopra, N.: Controlled synchronization of heterogeneous robotic manipulators in the task space. IEEE Trans. Robot. 28, 268–275 (2012)

    Article  Google Scholar 

  6. Rodriguez-Angeles, A., Nijmeijer, H.: Mutual synchronization of robot via estimated state feedback: a cooperative approach. IEEE Trans. Control Syst. Technol. 12(4), 542–554 (2004)

    Article  Google Scholar 

  7. Adaptive robot control using neural network: Sad, M., Bigras, P., Dessaint, L.-A., AI-Haddad, K. IEEE Trans. Ind. Electron. 41, 176–181 (1994)

    Google Scholar 

  8. He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46, 620–629 (2016)

    Article  Google Scholar 

  9. Li, X., Cheah, C.C.: Adaptive neural network control of robot based on a unified objective bound. IEEE Trans. Control Syst. Technol. 22, 1032–1043 (2014)

    Article  Google Scholar 

  10. Le, Q.D., Kang, H.-J., Le, T.D.: Adaptive extended computed torque control of 3 DOF planar parallel manipulators using neural network and error compensator. In: Huang, D.-S., Han, K., Hussain, A. (eds.) ICIC 2016. LNCS, vol. 9773, pp. 437–448. Springer, Cham (2016). doi:10.1007/978-3-319-42297-8_41

    Chapter  Google Scholar 

  11. Gao, Y., Er, M.J., Yang, S.: Adaptive control of robot manipulators using fuzzy neural networks. IEEE Trans. Ind. Electron. 48, 1274–1278 (2001)

    Article  Google Scholar 

  12. Chen, C.-S.: Dynamic structure neural fuzzy networks for robust adaptive control of robot manipulators. IEEE Trans. Ind. Electron. 55, 3402–3414 (2008)

    Article  Google Scholar 

  13. Chen, M.S., Manry, M.T.: Conventional modeling of the multilayer perception using polynominal basis functions. IEEE Trans. Neural Netw. 4, 14–16 (1992)

    Google Scholar 

  14. Castillo, E., Guijarro-Berdinas, B., Fontenla-Romero, O., Alonso-Betanzos, A.: A verry fast learning method for neural networks based on sensitivity analysis. J. Mach. Learn. Res. 7, 1159–1182 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Karayiannis, N.B., Venetsanopoulos, A.N.: Fast learning algorithm for neural networks. IEEE Trans. Circ. Syst. 39(7), 453–474 (1992)

    Article  MATH  Google Scholar 

  16. Yam, Y.F., Chow, T.W.S., Leung, C.T.: A new method in determining the initial weights of feedforward neural networks. Neuralcomputing 16, 23–32 (1997)

    Article  Google Scholar 

  17. Wang, S., Chung, F.-L., Wang, J., Wu, J.: A fast learning method for feedforward neural networks. Neuralcomputing 149, 295–307 (2015)

    Article  Google Scholar 

  18. Yang, S.-S., Tseng, C.-S.: An orthogonal neural network for function approximation. IEEE Trans. Syst. Man Cybern. 26(5), 779–785 (1996)

    Article  Google Scholar 

  19. Sher, C.F., Tseng, C.-S., Chen, C.-S.: Properties and performance of orthogonal neural network in function approximation. Int. J. Intell. Syst. 16, 1377–1392 (2001)

    Article  MATH  Google Scholar 

  20. Peric, S.L., Antic, D.S., Milovanovic, M.B., Mitic, D.B., Milojkovic, M.T., Nikolic, S.S.: Quasi-sliding mode control with orhtogonal endocrine neural network-based estimator applied in anti-lock braking system. IEEE/ASME Trans. Mechatron. 21(2), 754–764 (2016)

    Article  Google Scholar 

  21. Milojkovic, M.T., Antic, D.S., Milovanovic, M.B., Nikolic, S.S., Peric, S.L., Almawlawe, M.: Modeling of dynamic systems using othogonal endocrine adaptive neural-fuzzy inference systems. J. Dyn. Syst. Meas. Control 137(9), DS-15-1098 (2015)

    Article  Google Scholar 

  22. Milojkovic, M.T., Nikolic, S.S., Dankovic, B., Antic, D., Jovanovic, Z.: Modeling of dynamical systems based on almost orthogonal polynominal. Math. Comput. Model. Dyn. Syst. 16(2), 133–144 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Timmis, J., Neal, M., Thorniley, J.: An adaptive neuro-endocrine system for robotic systems. In: IEEE Workshop on Robotic Intelligence in Informationally Structured Space, pp. 129–136 (2009). doi:10.1109/RIISS.2009.4937917

  24. Wang, P.: Control of robot manipulators based on legendre orthogonal neural network. Appl. Mech. Mater. 427–429, 1089–1092 (2013)

    Google Scholar 

  25. Nakamura, Y., Ghodoussi, M.: Dynamics computation of close-link robot mechanisms with no redundant and redundant actuators. IEEE Trans. Robot. Autom. 5, 294–302 (1989)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B03930496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Le, Q.D., Kang, HJ., Le, T.D. (2017). An Adaptive Position Synchronization Controller Using Orthogonal Neural Network for 3-DOF Planar Parallel Manipulators. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63315-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63314-5

  • Online ISBN: 978-3-319-63315-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics