Skip to main content

Predicting Essential Proteins Using a New Method

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10362))

Included in the following conference series:

  • 2082 Accesses

Abstract

Essential proteins are indispensable for the survival of organisms. Computational methods for predicting essential proteins in terms of the global protein-protein interaction (PPI) networks is severely restricted due to the insufficiency of the PPI data, but fortunately the subcellular localization information helps to make up the deficiency. In the study, a new method named CNC is developed to detect essential proteins. First, the subcellular localization information is incorporated into the PPI networks, so each interaction in the networks is weighted. Meanwhile the edge clustering coefficient of each pair interacting proteins is calculated and the second weighted value of each interaction in the networks is gained. The two kinds of weighted values are integrated to build a new weighted PPI networks. The proteins in the new weighted networks are scored by the weighted degree centrality (WDC) and sorted in descending order of their scores. Six methods, i.e., CNC, CIC, DC, NC, PeC and WDC are used to prioritize the proteins in the yeast PPI networks. The results demonstrate that CNC outperforms other state-of-the-art ones. At the same time, the analysis also mean that CNC is an effective technology to identify essential proteins by integrating different biological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Judson, N., Mekalanos, J.J.: TnAraOut, a transposon based approach to identify and characterize essential bacterial genes. Nat Biotechnol. 18(7), 740–745 (2000). Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.) CONFERENCE 2016. LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016)

    Article  Google Scholar 

  2. Li, J.-J., Huang, D.S., Lok, T.-M., Lyu, M.R., Li, Y.-X., Zhu, Y.-P.: Network analysis of the protein chain tertiary structures of heterocomplexes. Protein Peptide Lett. 13(4), 391–396 (2006)

    Article  Google Scholar 

  3. Zhang, G.-Z., Huang, D.S., Quan, Z.H.: Combining a binary input encoding scheme with RBFNN for globulin protein inter-residue contact map prediction. Pattern Recogn. Lett. 26(10), 1543–1553 (2005)

    Article  Google Scholar 

  4. Zhao, X.-M., Huang, D.S., Cheung, Y.-M.: A novel hybrid GA/RBFNN technique for protein classification. Protein Pept. Lett. 12(4), 383–386 (2005)

    Article  Google Scholar 

  5. Zhang, G.-Z., Huang, D.S.: Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme. J. Comput. Aided Mol. Des. 18(12), 797–810 (2004)

    Article  Google Scholar 

  6. Zhang, G.-Z., Huang, D.S.: Inter-residue spatial distance prediction by using intergrating GA with RBFNN. Protein Pept. Lett. 11(6), 571–576 (2004)

    Article  Google Scholar 

  7. Vallabhajosyula, R.R., Chakravarti, D., Lutfeali, S., Ray, A., Raval, A.: Identifying hubs in protein interaction networks. PLoS ONE 4(4), e5344 (2009)

    Article  Google Scholar 

  8. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  9. Wuchty, S., Stadler, P.F.: Centers of complex networks. J. Theor. Biol. 223(1), 45–53 (2003)

    Article  MathSciNet  Google Scholar 

  10. Estrada, E.: Rodr´ıguez-Vel´azquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E 71(5), 056103 (2005)

    Article  MathSciNet  Google Scholar 

  11. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)

    Article  Google Scholar 

  12. Stevenson, K., Zelen, M.: Rethinking centrality: methods and examples. Soc. Netw. 11(1), 1–37 (1989)

    Article  MathSciNet  Google Scholar 

  13. Wang, H., Li, M., Wang, J., Pan, Y.: A new method for identifying essential proteins based on edge clustering coefficient. In: International Symposium on Bioinformatics Research and Applications, pp. 87–98. Springer, Berlin, Heidelberg, May 2011

    Google Scholar 

  14. Shun, P., Huang, D.S.: Cooperative competition clustering for gene selection. J. Cluster Sci. 17(4), 637–651 (2006)

    Article  Google Scholar 

  15. Wang, B., Wong, H.S., Huang, D.S.: Inferring protein-protein interacting sites using residue conservation and evolutionary information. Protein Pept. Lett. 13(10), 999–1005 (2006)

    Article  Google Scholar 

  16. Huang, D.S., Huang, X.: Improved performance in protein secondary structure prediction by combining multiple predictions. Protein Pept. Lett. 13(10), 985–991 (2006)

    Article  MathSciNet  Google Scholar 

  17. Huang, D.S., Zhao, X.-M., Huang, G.-B., Cheung, Y.-M.: Classifying protein sequences using hydropathy blocks. Pattern Recogn. 39(12), 2293–2300 (2006)

    Article  MATH  Google Scholar 

  18. Huang, D.S., Zheng, C.-H.: Independent component analysis based penalized discriminant method for tumor classification using gene expression data. Bioinformatics 22(15), 1855–1862 (2006)

    Article  Google Scholar 

  19. Li, J.-J., Huang, D.S., Wang, B., Chen, P.: Identifying protein-protein interfacial residues in heterocomplexes using residue conservation scores. Int. J. Biol. Macromol. 38(3–5), 241–247 (2006)

    Article  Google Scholar 

  20. Sprinzak, E., Sattath, S., Margalit, H.: How reliable are experimental protein-protein interaction data? J. Mol. Biol. 327, 919–923 (2003)

    Article  Google Scholar 

  21. Chen, J., Yuan, B.: Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22, 2283–2290 (2006)

    Article  Google Scholar 

  22. Peng, W., Wang, J., Wang, W., et al.: Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks. BMC Syst. Biol. 6(1), 1–17 (2012)

    Article  Google Scholar 

  23. Li, M., Wang, J.X., Wang, H., et al.: Identification of essential proteins from weighted protein-protein interaction networks. J. Bioinform. Comput. Biol. 11(03), 1–19 (2013)

    Article  Google Scholar 

  24. Tang, X., Wang, J., Zhong, J., et al.: Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(2), 407–418 (2014)

    Article  Google Scholar 

  25. Li, M., Zhang, H., Wang, J., et al.: A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Syst. Biol. 6(1), 1–9 (2012)

    Article  Google Scholar 

  26. Peng, X., Wang, J., Zhong, J,, et al.: An efficient method to identify essential proteins for different species by integrating protein subcellular localization information. In: IEEE International Conference on Bioinformatics and Biomedicine, vol. 2015, pp. 277–280 (2015)

    Google Scholar 

  27. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. U.S.A. 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  28. Huh, W.K., Falvo, J.V., et al.: Global analysis of protein localization in budding yeast. Nature 425(6959), 686–691 (2003)

    Article  Google Scholar 

  29. Zhang, R., Lin, Y.: DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res. 37(suppl 1), D455–D458 (2009)

    Article  Google Scholar 

  30. Stark, C., Breitkreutz, B.J., et al.: Biogrid: a general repository for interaction datasets. Nucleic Acids Res. 34(1), D535–D539 (2006)

    Article  Google Scholar 

  31. Binder, J.X., Pletscher-Frankild, S., et al.: COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database 2014(bau012), 1–9 (2014)

    Google Scholar 

  32. Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6(1), 35–40 (2006)

    Article  Google Scholar 

  33. Ning, K., Ng, H.K., Srihari, S., et al.: Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology. BMC Bioinform. 11(1), 1–14 (2010)

    Article  Google Scholar 

  34. Deng, S.-P., Zhu, L., Huang, D.S.: Predicting hub genes associated with cervical cancer through gene co-expression networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(1), 27–35 (2016)

    Article  Google Scholar 

  35. Zhu, L., Ping, D.-S., Huang, D.S.: A two stage geometric method for pruning unreliable links in protein-protein networks. IEEE Trans. NanoBios-ci. 14(5), 528–534 (2015)

    Article  Google Scholar 

  36. Huang, D.S., Zhang, L., Han, K., Deng, S., Yang, K., Zhang, H.: Prediction of protein-protein interactions based on protein-protein correlation using least squares regression. Curr. Protein Pept. Sci. 15(6), 553–560 (2014)

    Article  Google Scholar 

  37. Zhu, L., You, Z.-H., Huang, D.S., Wang, B.: t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks. PLOS ONE 8(4), e58368 (2013). doi:10.1371/journal.pone.0058368

    Article  Google Scholar 

  38. Huang, D.S., Jiang, W.: A general CPL-AdS methodology for fixing dynamic parameters in dual environments. IEEE Trans. Syst. Man Cybern. Part B 42(5), 1489–1500 (2012)

    Article  Google Scholar 

  39. Xia, J.-F., Zhao, X.-M., Song, J., Huang, D.S.: APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinform. 11, 174 (2010)

    Article  Google Scholar 

  40. Xia, J.-F., Zhao, X.-M., Huang, D.-S.: Predicting protein-protein interactions from protein sequences using meta predictor. Amino Acids 39(5), 1595–1599 (2010)

    Article  Google Scholar 

  41. Xia, J.-F., Han, K., Huang, D.S.: Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor. Protein Pept. Lett. 17(1), 137–145 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported in part by the National Natural Science Foundation of China under Grant Nos.61472133, 61502214, 31560317, 61370172, Hunan Provincial Natural Science Foundation of China Nos. 15JJ2038, 15JJ2037, Research Foundation of Education Bureau of Hunan Province Nos. 14A027, [2015]118, [2013]532, CSC No. 201508430098, Hunan Key Laboratory no. 2015TP1017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-wei Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tang, Xw. (2017). Predicting Essential Proteins Using a New Method. In: Huang, DS., Jo, KH., Figueroa-García, J. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10362. Springer, Cham. https://doi.org/10.1007/978-3-319-63312-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63312-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63311-4

  • Online ISBN: 978-3-319-63312-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics