Skip to main content

Effective Iris Recognition for Distant Images Using Log-Gabor Wavelet Based Contourlet Transform Features

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10361))

Included in the following conference series:

Abstract

Distant iris recognition has become an active research topic in biometric as well as computer vision, but it is still a very challenging problem. In order to solve it effectively, we propose a novel framework by utilizing Log-Gabor wavelet based Contourlet transform (LGCT) feature descriptor with an effective kernel based extreme learning machine (KELM) classifier. The experiments are conducted on CASIA-v4 which is a typical database of distant iris images. It is demonstrated by the experimental results that our proposed LGCT features are quite effective for distant iris recognition and the highest accuracy can arrive at 95.93% when they are fused with the convolutional neural networks (CNN) and gradient local auto-correlations (GLAC) features together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daugman, J.G.: Biometric personal identification system based on iris analysis. United States Patent, Patent Number: 5291560 (1994)

    Google Scholar 

  2. Boles, W., Boashash, B.: A human identification techniques using images of the iris and wavelet transform. IEEE Trans. Sig. Process. 46(4), 1185–1188 (1998)

    Article  Google Scholar 

  3. Daugman, J.G.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol. 14(1), 21–30 (2004)

    Article  Google Scholar 

  4. Seung-In, N., Bae, K., Park, Y., Kim, J.: A novel method to extract features for iris recognition system. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 862–868. Springer, Heidelberg (2003). doi:10.1007/3-540-44887-X_100

    Chapter  Google Scholar 

  5. Monro, D.M., Rakshit, S., Zhang, D.: DCT-based iris recognition. IEEE Trans. PAMI 29(4), 586–595 (2007)

    Article  Google Scholar 

  6. He, Z., Tan, T., Sun, Z., Qiu, X.: Toward accurate and fast iris segmentation for iris biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1670–1684 (2009)

    Article  Google Scholar 

  7. Kumar, A., Passi, A.: Comparison and combination of iris matchers for reliable personal authentication. Pattern Recogn. 43(3), 1016–1026 (2010)

    Article  MATH  Google Scholar 

  8. Fancourt, C., Bogoni, L., Hanna, K., Guo, Y., Wildes, R., Takahashi, N., Jain, U.: Iris recognition at a distance. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 1–13. Springer, Heidelberg (2005). doi:10.1007/11527923_1

    Chapter  Google Scholar 

  9. Tan, C.-W., Kumar, A.: Unified frame work for automated iris segmentation using distantly acquired face image. IEEE Trans. Image Process. 21(9), 4068–4078 (2012)

    Article  MathSciNet  Google Scholar 

  10. Tan, C.-W., Kumar, A.: Efficient iris segmentation using grow-cut algorithm for remotely acquired iris images. In: 15th International Conference on BTAS, pp. 99–104. IEEE (2012)

    Google Scholar 

  11. Tan, C.-W., Kumar, A.: Towards online iris and periocular recognition under relaxed imaging constraints. IEEE Trans. Image Process. 22(10), 3751–3765 (2013)

    Article  MathSciNet  Google Scholar 

  12. Kumar, A., Chan, T.-S.: Iris recognition using quaternionic sparse orientation code (QSOC). In: Proceedings of Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 56–64 (2012)

    Google Scholar 

  13. Tan, C.-W., Kumar, A.: Accurate iris recognition at a distance using stabilized iris encoding and zernike moments phase features. IEEE Trans. Image Process. 23(9), 3962–3974 (2014)

    Article  MathSciNet  Google Scholar 

  14. Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: The best bits in an iris code. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 964–973 (2009)

    Article  Google Scholar 

  15. Wenbo, D., Zhenan, S., Tieniu, T.: Iris matching based on personalized weight map. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1744–1757 (2011)

    Article  Google Scholar 

  16. Kobayashi, T., Otsu, N.: Image feature extraction using gradient local auto-correlations. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 346–358. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88682-2_27

    Chapter  Google Scholar 

  17. Ali, L.E., Luo, J., Ma, J.: Iris recognition from distant images based on multiple feature descriptors and classifiers. In: Proceedings of IEEE 13th International Conference on Signal Processing (ICSP), pp. 1357–1362 (2016)

    Google Scholar 

  18. Field, D.: Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. 4(12), 2379–2394 (1987)

    Article  Google Scholar 

  19. Do, M.N., Vetterli, M.: The Contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  20. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. 42(2), 513–529 (2012)

    Article  Google Scholar 

  21. CASIA-v4 database: http://biometrics.idealtest.Org/dbDetailForUser.do?Id=4

  22. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:14085093 (2014)

  23. Kobayashi, T., Otsu, N.: Motion recognition using local auto-correlation of space-time gradient. Pattern Recogn. Lett. 33, 1188–1195 (2012). Elsevier

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of China for Grant 61171138. We also acknowledge the Institute of Automation (Chinese Academy of Science, China) for the contributions of the database employed in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwen Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ali, L.E., Luo, J., Ma, J. (2017). Effective Iris Recognition for Distant Images Using Log-Gabor Wavelet Based Contourlet Transform Features. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10361. Springer, Cham. https://doi.org/10.1007/978-3-319-63309-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63309-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63308-4

  • Online ISBN: 978-3-319-63309-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics