Skip to main content

Diagnosis and Evaluation

  • Chapter
  • First Online:
  • 1178 Accesses

Abstract

Methods of blood pressure (BP) measurement aim to estimate the daily vascular load, which is theoretically resultant of the sum of heart beat-to-beat generated BP throughout 24 h. This chapter presents the evidences that automatic oscillometric methods are more precise than the auscultatory method for BP measurement. Methods for repeated and unwitnessed BP pressure measurements, such as in the automated office and home BP measurement, and in ambulatory BP measurement, are more efficient to estimate the usual BP. Clinical and complementary evaluation aim to assess target organ damage and stratify the risks of patients. Development of clinical disease assumes dominance in the determination of prognosis. ECG and echocardiogram, optic fundus examination, evaluation of aortic stiffness, peripheral artery disease, and BP variability are capable to further stratify the risks of patients, but do not influence the choosing of therapeutic strategies. Search of primary causes of hypertension is not indicated for most patients. Presence of diagnostic clues and resistant hypertension are the main reasons to search for primary causes of hypertension.

This is a preview of subscription content, log in via an institution.

References

  1. Riva-Rocci S. Un nuovo sfigmomanometro. Gazz Medi Torino. 1896;50:981–96.

    Google Scholar 

  2. Korotkov NS. To the question of methods of determining the blood pressure. Rep Imp Mil Acad. 1905;11:365–7.

    Google Scholar 

  3. O’Brien E, Atkins N, Stergiou G, Karpettas N, Parati G, Asmar R, et al. European Society of Hypertension international protocol revision 2010 for the validation of blood pressure measuring devices in adults. Blood Press Monit. 2010;15:23–38.

    Article  PubMed  Google Scholar 

  4. British Hypertension Society. BP monitors. http://bhsoc.org/bp-monitors/bp-monitors/. Accessed Sept 2016.

  5. American National Standard. Non-invasive sphygmomanometers—part 2: clinical validation of automated measurement type. ANSI/AAMI/ISO 81060-2:2009. Arlington: Association for the Advancement of Medical Instrumentation, AAMI; 2009.

    Google Scholar 

  6. Kallioinen N, Hill A, Horswill MS, Ward HE, Watson MO. Sources of inaccuracy in the measurement of adult patients’ resting blood pressure in clinical settings: a systematic review. J Hypertens. 2017;35(3):421–41.

    Article  CAS  PubMed  Google Scholar 

  7. Williams B. Time to abandon clinic blood pressure for the diagnosis of hypertension? Circulation. 2016;134:1808–11.

    Article  PubMed  Google Scholar 

  8. Smirk FH. Casual and basal pressures: IV—their relationship to the supplemental pressure with a note on statistical considerations. Br Heart J. 1944;6:176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, et al. Blood pressure, stroke, and coronary heart disease. Part 1. Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335:765–74.

    Article  CAS  PubMed  Google Scholar 

  10. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  Google Scholar 

  11. Fuchs FD, Lubianca JF, Moraes RS, Moreira L, Rosito GA, Moreira WD, et al. The behavior of blood pressure during repeated measurements in a cohort of patients evaluated for hypertension. High Blood Press. 1995;4:28–33.

    Google Scholar 

  12. Sega R, Facchetti R, Bombelli M, Cesana G, Corrao G, Grassi G, et al. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population. Circulation. 2005;111:1777–83.

    Article  PubMed  Google Scholar 

  13. Salles GF, Reboldi G, Fagard RH, Cardoso CR, Pierdomenico SD, Verdecchia P, et al. Prognostic effect of the nocturnal blood pressure fall in hypertensive patients: the Ambulatory Blood Pressure Collaboration in Patients with Hypertension (ABC-H) meta-analysis. Hypertension. 2016;67:693–700.

    Article  CAS  PubMed  Google Scholar 

  14. Niiranen TJ, Mäki J, Puukka P, Karanko H, Jula AM. Office, home, and ambulatory blood pressures as predictors of cardiovascular risk. Hypertension. 2014;64:2816.

    Article  CAS  Google Scholar 

  15. Cardoso CR, Salles GF. Prognostic importance of ambulatory blood pressure monitoring in resistant hypertension: is it all that matters. Curr Hypertens Rep. 2016;18(12):85.

    Article  PubMed  Google Scholar 

  16. Shimada K, Kario K, Kushiro T, Teramukai S, Zenimura N, Ishikawa Y, et al. Prognostic significance of on-treatment home and clinic blood pressure for predicting cardiovascular events in hypertensive patients in the HONEST study. J Hypertens. 2016;34(8):1520–7.

    Article  CAS  PubMed  Google Scholar 

  17. Lindroos AS, Johansson JK, Puukka PJ, Kantola I, Salomaa V, Juhanoja EP, et al. The association between home vs. ambulatory night-time blood pressure and end-organ damage in the general population. J Hypertens. 2016;34(9):1730–7.

    Article  CAS  PubMed  Google Scholar 

  18. Andreadis EA, Agaliotis G, Kollias A, Kolyvas G, Achimastos A, Stergiou GS. Night-time home versus ambulatory blood pressure in determining target organ damage. J Hypertens. 2016;34:438–44.

    Article  CAS  PubMed  Google Scholar 

  19. Almeida AE, Stein R, Gus M, Nascimento JA, Arévalo JR, Fuchs FD, Ribeiro JP. Improved diagnostic accuracy of a 3-day protocol of home blood pressure monitoring for the diagnosis of arterial hypertension. Blood Press Monit. 2013;18:119–26.

    Article  PubMed  Google Scholar 

  20. Myers MG. A short history of automated office blood pressure—15 years to SPRINT. J Clin Hypertens (Greenwich). 2016;18:721–4.

    Article  Google Scholar 

  21. Myers MG, Kaczorowski J, Dolovich L, Tu K, Paterson JM. Cardiovascular risk in hypertension in relation to achieved blood pressure using automated office blood pressure measurement. Hypertension. 2016;68:866–72.

    Article  CAS  PubMed  Google Scholar 

  22. SPRINT Research Group, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.

    Article  CAS  Google Scholar 

  23. Kjeldsen SE, Lund-Johansen P, Nilsson PM, Mancia G. Unattended blood pressure measurements in the Systolic Blood Pressure Intervention trial: implications for entry and achieved blood pressure values compared with other trials. Hypertension. 2016;67:808–12.

    Article  CAS  PubMed  Google Scholar 

  24. Filipovsky J, Seidlerova J, Kratochvil Z, Karnosova P, Hronova M, Mayer O Jr. Automated compared to manual office blood pressure and to home blood pressure in hypertensive patients. Blood Press. 2016;25:228–34.

    Article  PubMed  Google Scholar 

  25. Veterans Administration Cooperative Study Group on Antihypertensive Agents. Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mmHg. JAMA. 1967;202(11):1028–34.

    Article  Google Scholar 

  26. Flack JM. Method of blood pressure measurement, interpretation of SPRINT, and the Atlantic divide. Curr Hypertens Rep. 2017;19(3):19.

    Article  PubMed  Google Scholar 

  27. Leung AA, Nerenberg K, Daskalopoulou SS, McBrien K, Zarnke KB, Dasgupta K, et al. Hypertension Canada’s 2016 Canadian Hypertension Education Program guidelines for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol. 2016;32:569–88.

    Article  PubMed  Google Scholar 

  28. Mancia G, Facchetti R, Bombelli M, Grassi G, Sega R. Long-term risk of mortality associated with selective and combined elevation in office, home, and ambulatory blood pressure. Hypertension. 2006;47:846–53.

    Article  CAS  PubMed  Google Scholar 

  29. Mancia G, Bombelli M, Brambilla G, Facchetti R, Sega R, Toso E, et al. Long-term prognostic value of white coat hypertension: an insight from diagnostic use of both ambulatory and home blood pressure measurements. Hypertension. 2013;62(1):168–74.

    Article  CAS  PubMed  Google Scholar 

  30. Franklin SS, Thijs L, Asayama K, Li Y, Hansen TW, Boggia J, et al. The cardiovascular risk of white-coat hypertension. J Am Coll Cardiol. 2016;68(19):2033–204.

    Article  PubMed  Google Scholar 

  31. Huang Y, Huang W, Mai W, Cai X, An D, Liu Z, et al. White-coat hypertension is a risk factor for cardiovascular diseases and total mortality. J Hypertens. 2017;35(4):677–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Myers MG. Statistical analysis as a cause of white-coat hypertension. J Hypertens. 2017;35:707–9.

    Article  CAS  PubMed  Google Scholar 

  33. Parati G, Stergiou G, O’Brien E, Asmar R, Beilin L, Bilo G, et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens. 2014;32:1359–66.

    Article  CAS  PubMed  Google Scholar 

  34. Wang YC, Shimbo D, Muntner P, Moran AE, Krakoff LR, Schwartz JE. Prevalence of masked hypertension among US adults with nonelevated clinic blood pressure. Am J Epidemiol. 2017;185(3):194–202.

    PubMed  Google Scholar 

  35. Parati G, Stergiou GS, Asmar R, Bilo G, de Leeuw P, Imai Y, et al. European Society of Hypertension practice guidelines for home blood pressure monitoring. J Hum Hypertens. 2010;24(12):779–85.

    Article  CAS  PubMed  Google Scholar 

  36. Myers MG, Valdivieso M, Kiss A. Use of automated office blood pressure measurement to reduce the white coat response. J Hypertens. 2009;27(2):280–6.

    Article  CAS  PubMed  Google Scholar 

  37. Andreadis EA, Angelopoulos ET, Tsakanikas AP, Agaliotis GD, Kravvariti SD, Mousoulis GP. Automated office versus home measurement of blood pressure in the assessment of morning hypertension. Blood Press Monit. 2012;17(1):24–34.

    Article  PubMed  Google Scholar 

  38. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2017; Nov 13 [Epub ahead of print].

    Google Scholar 

  39. Atkins D, Barton M. The periodic health examination, Chap. 15. In: Goldman L, Schafer AI, editors. Goldman’s Cecil medicine. 25th ed. Philadelphia: Elsevier Saunders; 2016.

    Google Scholar 

  40. Gus M, Fuchs FD, Pimentel M, Rosa D, Melo AG, Moreira LB. Behavior of ambulatory blood pressure surrounding episodes of headache in mildly hypertensive patients. Arch Intern Med. 2001;161:252–5.

    Article  CAS  PubMed  Google Scholar 

  41. Wiehe M, Fuchs SC, Moreira LB, Moraes RS, Fuchs FD. Migraine is more frequent in individuals with optimal and normal blood pressure: a population-based study. J Hypertens. 2002;20:1303–6.

    Article  CAS  PubMed  Google Scholar 

  42. Tzourio C, Gagniere B, El Amrani M, Alpérovitch A, Bousser MG. Relationship between migraine, blood pressure and carotid thickness. A population-based study in the elderly. Cephalalgia. 2003;23:914–20.

    Article  CAS  PubMed  Google Scholar 

  43. Tronvik E, Zwart JA, Hagen K, Dyb G, Holmen TL, Stovner LJ. Association between blood pressure measures and recurrent headache in adolescents: cross-sectional data from the HUNT-Youth study. J Headache Pain. 2011;12(3):347–53.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fagernæs CF, Heuch I, Zwart JA, Winsvold BS, Linde M, Hagen K. Blood pressure as a risk factor for headache and migraine: a prospective population-based study. Eur J Neurol. 2015;22(1):156–62.

    Article  PubMed  Google Scholar 

  45. Gardener H, Monteith T, Rundek T, Wright CB, Elkind MS, Sacco RL. Hypertension and migraine in the Northern Manhattan Study. Ethn Dis. 2016;26(3):323–30.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fuchs FD, Gus M, Moreira LB, Moreira WD, Gonçalves SC, Nunes G. Headache is not more frequent among patients with moderate to severe hypertension. J Hum Hypertens. 2003;17:787–90.

    Article  CAS  PubMed  Google Scholar 

  47. Hagen K, Stovner JL, Vatten L, Holmen J, Zwart J-A, Bovim G. Blood pressure and risk of headache: a prospective study of 22 685 adults in Norway. J Neurol Neurosurg Psychiatry. 2002;72:463–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Law M, Morris JK, Jordan R, Wald N. Headaches and the treatment of blood pressure results from a meta-analysis of 94 randomized placebo-controlled trials with 24 000 participants. Circulation. 2005;112(15):2301–6.

    Article  CAS  PubMed  Google Scholar 

  49. Lubianca-Neto JF, Bredemeier M, Carvalhal EF, Arruda CA, Estrella E, Pletsch A, et al. A study of the association between epistaxis and the severity of hypertension. Am J Rhinol. 1998;12:269–72.

    Article  CAS  PubMed  Google Scholar 

  50. Lubianca Neto JF, Fuchs FD, Facco SR, Gus M, Fasolo L, Mafessoni R, et al. Is epistaxis evidence of end-organ damage in patients with hypertension? Laryngoscope. 1999;109:1111–5.

    Article  CAS  PubMed  Google Scholar 

  51. Fuchs FD, Moreira LB, Pires CP, Torres FS, Furtado MV, Moraes RS, et al. Absence of association between hypertension and epistaxis: a population-based study. Blood Press. 2003;12:145–8.

    Article  PubMed  Google Scholar 

  52. Trevisol DJ, Moreira LB, Kerkhoff A, Fuchs SC, Fuchs FD. Health-related quality of life and hypertension: a systematic review and meta-analysis of observational studies. J Hypertens. 2011;29:179–88.

    Article  CAS  PubMed  Google Scholar 

  53. Trevisol DJ, Moreira LB, Fuchs FD, Fuchs SC. Health-related quality of life is worse in individuals with hypertension under drug treatment: results of population-based study. J Hum Hypertens. 2012;26:374–80.

    Article  CAS  PubMed  Google Scholar 

  54. Kerkhoff AC, Moreira LB, Fuchs FD, Fuchs SC. Association between hypertension and musculoskeletal complaints: a population-based study. J Hypertens. 2012;30:2112–7.

    Article  CAS  PubMed  Google Scholar 

  55. Okin PM, Devereux RB, Nieminen MS, Jern S, Oikarinen L, Viitasalo M, et al. Electrocardiographic strain pattern and prediction of new-onset congestive heart failure in hypertensive patients: the Losartan Interventionfor Endpoint Reduction in Hypertension (LIFE) study. Circulation. 2006;113:67–73.

    Article  PubMed  Google Scholar 

  56. Okin PM, Devereux RB, Nieminen MS, Jern S, Oikarinen L, Viitasalo M, et al. Electrocardiographic strain pattern and prediction of cardiovascular morbidity and mortality in hypertensive patients. Hypertension. 2004;44:48–54.

    Article  CAS  PubMed  Google Scholar 

  57. Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004;292:2343–9.

    Article  CAS  PubMed  Google Scholar 

  58. Salles GF, Cardoso CR, Fiszman R, Muxfeldt ES. Prognostic significance of baseline and serial changes in electrocardiographic strain pattern in resistant hypertension. J Hypertens. 2010;28(8):1715–23.

    Article  CAS  PubMed  Google Scholar 

  59. Liebson PR, Grandits GA, Dianzumba S, Prineas RJ, Grimm RH Jr, Neaton JD, et al. Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass in patients receiving nutritional–hygienic therapy in the Treatment of Mild Hypertension Study (TOMHS). Circulation. 1995;91:698–706.

    Article  CAS  PubMed  Google Scholar 

  60. Fuchs SC, Poli-de-Figueiredo Carlos E, Figueiredo-Neto JA, Scala LC, Whelton PK, Mosele F, et al. Effectiveness of chlorthalidone plus amiloride for the prevention of hypertension: the PREVER-Prevention randomized clinical trial. J Am Heart Assoc. 2016;5:e004248.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bang CN, Gerdts E, Aurigemma GP, Boman K, Dahlöf B, Roman MJ, et al. Systolic left ventricular function according to left ventricular concentricity and dilatation in hypertensive patients: the Losartan Intervention for Endpoint Reduction in Hypertension study. J Hypertens. 2013;31:2060–8.

    Article  CAS  PubMed  Google Scholar 

  62. Bang CN, Gerdts E, Aurigemma GP, Boman K, de Simone G, Dahlöf B, et al. Four-group classification of left ventricular hypertrophy based on ventricular concentricity and dilatation identifies a low-risk subset of eccentric hypertrophy in hypertensive patients. Circ Cardiovasc Imaging. 2014;7(3):422–9.

    Article  PubMed  Google Scholar 

  63. de Simone G, Izzo R, Aurigemma GP, De Marco M, Rozza F, Trimarco V, et al. Cardiovascular risk in relation to a new classification of hypertensive left ventricular geometric abnormalities. J Hypertens. 2015;33(4):745–54.

    Article  PubMed  CAS  Google Scholar 

  64. Kane GC, Karon BL, Mahoney DW, Redfield MM, Roger VL, Burnett JC Jr, et al. Progression of left ventricular diastolic dysfunction and the risk of heart failure. JAMA. 2011;306(8):856–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shimbo D, Newman JD, Schwartz JE. Masked hypertension and prehypertension: diagnostic overlap and interrelationships with left ventricular mass: the Masked Hypertension Study. Am J Hypertens. 2012;25:664–71.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Santos AB, Gupta DK, Bello NA, Gori M, Claggett B, Fuchs FD, et al. Prehypertension is associated with abnormalities of cardiac structure and function in the Atherosclerosis Risk in Communities study. Am J Hypertens. 2016;29(5):568–74.

    Article  PubMed  Google Scholar 

  67. Davis BR, Kostis JB, Simpson LM, Black HR, Cushman WC, Einhorn PT, et al. Heart failure with preserved and reduced left ventricular ejection fraction in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Circulation. 2008;118(22):2259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Keith NM, Wagener HP, Barker NW. Some different types of essential hypertension: their course and prognosis. Am J Sci. 1939;197:332–43.

    Google Scholar 

  69. Fuchs FD, Maestri MK, Bredemeier M, Cardozo SE, Moreira FC, Wainstein MV, et al. Study of the usefulness of optic fundi examination of patients with hypertension in a clinical setting. J Hum Hypertens. 1995;9:547–51.

    CAS  PubMed  Google Scholar 

  70. Duncan BB, Wong TY, Tyroler HA, Davis CE, Fuchs FD. Hypertensive retinopathy and incident coronary heart disease in high risk men. Br J Ophthalmol. 2002;86:1002–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pakter HM, Ferlin E, Fuchs SC, Maestri MK, Moraes RS, Nunes G, et al. Measuring arteriolar-to-venous ratio in retinal photography of patients with hypertension: development and application of a new semi-automated method. Am J Hypertens. 2005;18:417–21.

    Article  PubMed  Google Scholar 

  72. Maestri MM, Fuchs SC, Ferlin E, Pakter HM, Nunes G, Moraes RS, et al. Detection of arteriolar narrowing in fundoscopic examination: evidence of a low performance of direct ophthalmoscopy in comparison with a microdensitometric method. Am J Hypertens. 2007;20:501–5.

    Article  PubMed  Google Scholar 

  73. Pakter HM, Fuchs SC, Maestri MK, Moreira LB, Dei Ricardi LM, Pamplona VF, et al. Computer-assisted methods to evaluate retinal vascular caliber: what are they measuring? Invest Ophthalmol Vis Sci. 2011;52:810–5.

    Article  PubMed  Google Scholar 

  74. Fuchs SC, Pakter HM, Maestri MK, Beltrami-Moreira M, Gus M, Moreira LB, et al. Are retinal vessels calibers influenced by blood pressure measured at the time of retinography acquisition? PLoS One. 2015;10:e0136678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Koch E, Rosenbaum D, Brolly A, Sahel J-A, Chaumet-Riffaud P, Girerd X, et al. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens. 2014;32:890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rosenbaum D, Mattina A, Koch E, Rossant F, Gallo A, Kachenoura N. Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics. J Hypertens. 2016;34:1115–22.

    Article  CAS  PubMed  Google Scholar 

  77. Beltrami-Moreira M, Qi L, Maestri MK, Fuchs FD, Pakter HM, Moreira LB, et al. Association between plasma adiponectin and arteriolar vessel caliber among elderly hypertensive subjects. J Am Soc Hypertens. 2015;9:620–7.

    Article  CAS  PubMed  Google Scholar 

  78. Wong TY, Mitchell P. Hypertensive retinopathy. N Engl J Med. 2004;351:2310–7.

    Article  CAS  PubMed  Google Scholar 

  79. Aissopou EK, Papathanassiou M, Nasothimiou EG, Konstantonis GD, Tentolouris N, Theodossiadis PG, et al. The Keith–Wagener–Barker and Mitchell–Wong grading systems for hypertensive retinopathy: association with target organ damage in individuals below 55 years. J Hypertens. 2015;33:2303–9.

    Article  CAS  PubMed  Google Scholar 

  80. Palatini P, Casiglia E, Gąsowski J, Głuszek J, Jankowski P, Narkiewicz K, et al. Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension. Vasc Health Risk Manag. 2011;7:725–39.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stergiou GS, Parati G, Vlachopoulos C, Achimastos A, Andreadis E, Asmar R, et al. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions: position statement of the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens. 2016;34(9):1665–77.

    Article  CAS  PubMed  Google Scholar 

  82. Hajibandeh S, Hajibandeh S, Shah S, Child E, Antoniou GA, Torella F. Prognostic significance of ankle brachial pressure index: a systematic review and meta-analysis. Vascular. 2017;25(2):208–24.

    Article  PubMed  Google Scholar 

  83. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al., CAFE Investigators, Anglo-Scandinavian Cardiac Outcomes Trial Investigators, CAFE Steering Committee and Writing Committee. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113:1213–25.

    Google Scholar 

  84. Sasaki S, Yoneda Y, Fujita H, Uchida A, Takenaka K, Takesako T, et al. Association of blood pressure variability with induction of atherosclerosis in cholesterol-fed rats. Am J Hypertens. 1994;7:45–59.

    Article  Google Scholar 

  85. Wittke E, Fuchs SC, Fuchs FD, Moreira LB, Ferlin E, Cichelero FT, et al. Association between different measurements of blood pressure variability by ABP monitoring and ankle–brachial index. BMC Cardiovasc Disord. 2010;10:55.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wittke EI, Fuchs SC, Moreira LB, Foppa M, Fuchs FD, Gus M. Blood pressure variability in controlled and uncontrolled blood pressure and its association with left ventricular hypertrophy and diastolic function. J Hum Hypertens. 2016;30:483–7.

    Article  CAS  PubMed  Google Scholar 

  87. Massierer D, Leiria LF, Severo MD, PDS L, Becker AD, Aguiar FM, et al. Blood pressure variability and its association with echocardiographic parameters in hypertensive diabetic patients. BMC Cardiovasc Disord. 2016;16:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tai C, Sun Y, Dai N, Xu D, Chen W, Wang J, et al. Prognostic significance of visit-to-visit systolic blood pressure variability: a meta-analysis of 77,299 patients. J Clin Hypertens (Greenwich). 2015;17:107–15.

    Article  Google Scholar 

  89. Ogliari G, Smit RA, Westendorp RG, Jukema JW, de Craen AJ, Sabayan B. Visit-to-visit blood pressure variability and future functional decline in old age. J Hypertens. 2016;34(8):1544–50.

    Article  CAS  PubMed  Google Scholar 

  90. Kronish IM, Lynch AI, Oparil S, Whittle J, Davis BR, Simpson LM, et al. The association between antihypertensive medication nonadherence and visit-to-visit variability of blood pressure findings from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Hypertension. 2016;68(1):39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on inter-individual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet. 2010;375:906–15.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang Y, Agnoletti D, Safar ME, Blacher J. Effect of antihypertensive agents on blood pressure variability: the Natrilix SR Versus Candesartan and Amlodipine in the Reduction of Systolic Blood Pressure in Hypertensive Patients (X-CELLENT) study. Hypertension. 2011;58:155–60.

    Article  CAS  PubMed  Google Scholar 

  93. Levi-Marpillat N, Macquin-Mavier I, Tropeano AI, Parati G, Maison P. Antihypertensive drug classes have different effects on short-term blood pressure variability in essential hypertension. Hypertens Res. 2014;37:585–90.

    Article  CAS  PubMed  Google Scholar 

  94. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19.

    Article  CAS  PubMed  Google Scholar 

  95. Egan BM, Zhao Y, Axon RN, Brzezinski WA, Ferdinand KC. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008. Circulation. 2011;124:1046–58.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Massierer D, Oliveira AC, Steinhorst AM, Gus M, Ascoli AM, Gonçalves SC, et al. Prevalence of resistant hypertension in non-elderly adults: prospective study in a clinical setting. Arq Bras Cardiol. 2012;99(1):630–5.

    Article  PubMed  Google Scholar 

  97. Ma W, Zhang Y, HOT-CHINA Working Group. Low rate of resistant hypertension in Chinese patients with hypertension: an analysis of the HOT-CHINA study. J Hypertens. 2013;31(12):2386–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. de la Sierra A, Segura J, Banegas JR, Gorostidi M, de la Cruz JJ, Armario P, et al. Clinical features of 8295 patients with resistant hypertension classified on the basis of ambulatory blood pressure monitoring. Hypertension. 2011;57(5):898–902.

    Article  PubMed  CAS  Google Scholar 

  99. Cushman WC, Ford CE, Cutler JA, Margolis KL, Davis BR, Grimm RH, et al., for the ALLHAT Collaborative Research Group. Success and predictors of blood pressure control in diverse North American settings: the Antihypertensive and Lipid-Lowering and Treatment to Prevent Heart Attack Trial (ALLHAT). J Clin Hypertens. 2002;4:393–404.

    Google Scholar 

  100. Gupta AK, Nasothimiou EG, Chane CL, Sever PS, Dahlof B, Poulter NR, on behalf of the ASCOT Investigators. Baseline predictors of resistant hypertension in the Anglo-Scandinavian Cardiac Outcome Trial (ASCOT): a risk score to identify those at high-risk. J Hypertens. 2011;29:2004–13.

    Article  CAS  PubMed  Google Scholar 

  101. Jamerson K, Weber MA, Bakris GL, Dahlof B, Pitt B, Shi V, for the ACCOMPLISH Trial Investigators. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 2008;359:2417–28.

    Article  CAS  PubMed  Google Scholar 

  102. Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, Margolis KL, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125:1635–42.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Muntner P, Davis BR, Cushman WC, Bangalore S, Calhoun DA, Pressel SL, et al. Treatment-resistant hypertension and the incidence of cardiovascular disease and end-stage renal disease: results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hypertension. 2014;64(5):1012–21.

    Article  CAS  PubMed  Google Scholar 

  104. Danielson M, Dammström B. The prevalence of secondary and curable hypertension. Acta Med Scand. 1981;209(6):451–5.

    CAS  PubMed  Google Scholar 

  105. Camelli S, Bobrie G, Postel-Vinay N, Azizi M, Plouin PF, Amar L. Prevalence of secondary hypertension in young hypertensive adults. J Hypertens. 2015;33(Suppl 1):e47.

    Article  PubMed  Google Scholar 

  106. Hannemann A, Wallaschofski H. Prevalence of primary aldosteronism in patient’s cohorts and in population-based studies—a review of the current literature. Horm Metab Res. 2012;44:157–62.

    Article  CAS  PubMed  Google Scholar 

  107. Jenks S, Yeoh SE, Conway BR. Balloon angioplasty, with and without stenting, versus medical therapy for hypertensive patients with renal artery stenosis. Cochrane Database Syst Rev. 2014;(12):CD002944.

    Google Scholar 

  108. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(5):1889–916.

    Article  CAS  PubMed  Google Scholar 

  109. Dekkers T, Prejbisz A, Kool LJ, Groenewoud HJ, Velema M, Spiering W, et al. Adrenal vein sampling versus CT scan to determine treatment in primary aldosteronism: an outcome-based randomised diagnostic trial. Lancet Diabetes Endocrinol. 2016;4(9):739–46.

    Article  PubMed  Google Scholar 

  110. Omura M, Saito J, Yamaguchi K, Kakuta Y, Nishikawa T. Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens Res. 2004;27:193–202.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fuchs, F.D. (2018). Diagnosis and Evaluation. In: Essentials of Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-63272-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63272-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63271-1

  • Online ISBN: 978-3-319-63272-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics