Skip to main content

Multiple Sclerosis: Implications of Obesity in Neuroinflammation

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 19))

Abstract

Since the discovery of the remarkable properties of adipose tissue as a metabolically active organ, several evidences on the possible link between obesity and the pathogenesis of multiple sclerosis (MS) have been gathered. Obesity in early life, mainly during adolescence, has been proposed as a relevant risk factor for late MS development. Moreover, once MS is initiated, obesity can contribute to increase disease severity by negatively influencing disease progress. Despite the fact that clinical data are not yet conclusive, many biochemical links have been recently disclosed. The “low-grade inflammation” that characterizes obesity can lead to neuroinflammation through different mechanisms, including choroid plexus and blood–brain barrier disruption. Furthermore, it is well known that resident immune cells of central nervous system and peripheral immune cells are involved in the pathogenesis of MS, and adipokines and neuropeptides such as neuropeptide Y may mediate the cross talk between them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angelucci F, Mirabella M, Caggiula M et al (2005) Evidence of involvement of leptin and IL-6 peptides in the action of interferon-beta in secondary progressive multiple sclerosis. Peptides 26(11):2289–2293

    Article  CAS  PubMed  Google Scholar 

  • Assadi M, Salimipour H, Akbarzadeh S et al (2011) Correlation of circulating omentin-1 with bone mineral density in multiple sclerosis: the crosstalk between bone and adipose tissue. PLoS One 6(9):e24240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balusu S, Van Wonterghem E, De Rycke R et al (2016) Identification of a novel mechanism of blood–brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med 8(10):1162–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batocchi AP, Rotondi M, Caggiula M et al (2003) Leptin as a marker of multiple sclerosis activity in patients treated with interferon-beta. J Neuroimmunol 139(1–2):150–154

    Article  CAS  PubMed  Google Scholar 

  • Baufeld C, Osterloh A, Prokop S et al (2016) High-fat diet-induced brain region- specific phenotypic spectrum of CNS resident microglia. Acta Neuropathol 132:361–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedoui S, Miyake S, Lin Y et al (2003) Neuropeptide Y (NPY) suppresses experimental autoimmune encephalomyelitis: NPY1 receptor-specific inhibition of autoreactive Th1 responses in vivo. J Immunol 171:3451–3458

    Article  CAS  PubMed  Google Scholar 

  • Belbasis L, Bellou V, Evangelou E et al (2015) Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol 4(3):263–273

    Article  Google Scholar 

  • Buckman LB, Hasty AH, Flaherty DK et al (2014) Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun 35:33–42

    Article  CAS  PubMed  Google Scholar 

  • Button EB, Mitchell AS, Domingos MM et al (2014) Microglial cell activation increases saturated and decreases monounsaturated fatty acid content but both lipid species are proinflammatory. Lipids 49:305–316

    Article  CAS  PubMed  Google Scholar 

  • Carrieri PB, Carbone F, Perna F et al (2015) Longitudinal assessment of immuno-metabolic parameters in multiple sclerosis patients during treatment with glatiramer acetate. Metabolism 64(9):1112–1121

    Article  CAS  PubMed  Google Scholar 

  • Chatzantoni K, Papathanassopoulos P, Gourzoulidou E et al (2004) Leptin and its soluble receptor in plasma of patients suffering from remitting-relapsing multiple sclerosis (MS): in vitro effects of leptin on type-1 and type-2 cytokine secretion by peripheral blood mononuclear cells, T-cells and monocytes of MS patients. J Autoimmun 23(2):169–177

    Article  CAS  PubMed  Google Scholar 

  • Daly RM, Gagnon C, Lu ZX et al (2012) Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: a national, population-based study. Clin Endocrinol 77(1):26–35

    Article  Google Scholar 

  • De Rosa V, Procaccini C, La Cava A et al (2006) Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest 116(2):447–455

    Article  PubMed  PubMed Central  Google Scholar 

  • Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558

    Article  CAS  PubMed  Google Scholar 

  • Dimitrijevic M, Stanojevic S (2013) The intriguing mission of neuropeptide Y in the immune system. Amino Acids 45:41–53

    Article  CAS  PubMed  Google Scholar 

  • Duperray A, Barbe D, Raguenez G et al (2015) Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4. Int Immunol 27(11):545–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emamgholipour S, Eshaghi SM, Hossein-Nezhad A et al (2013) Adipocytokine profile, cytokine levels and Foxp3 expression in multiple sclerosis: a possible link to susceptibility and clinical course of disease. PLoS One 8(10):e76555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evangelopoulos ME, Koutsis G, Markianos M (2014) Serum leptin levels in treatment-naive patients with clinically isolated syndrome or relapsing-remitting multiple sclerosis. Autoimmune Dis 2014:486282

    PubMed  PubMed Central  Google Scholar 

  • Flachenecker P, Wolf A, Krauser M et al (1999) Cardiovascular autonomic dysfunction in multiple sclerosis: correlation with orthostatic intolerance. J Neurol 246(7):578–586

    Article  CAS  PubMed  Google Scholar 

  • Frischer JM, Bramow S, Dal-Bianco A et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132(5):1175–1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Frisullo G, Mirabella M, Angelucci F et al (2007) The effect of disease activity on leptin, leptin receptor and suppressor of cytokine signalling-3 expression in relapsing-remitting multiple sclerosis. J Neuroimmunol 192(1–2):174–183

    Article  CAS  PubMed  Google Scholar 

  • Galgani M, Procaccini C, De Rosa V et al (2010) Leptin modulates the survival of autoreactive CD4+ T cells through the nutrient/energy-sensing mammalian target of rapamycin signaling pathway. J Immunol 185(12):7474–7479

    Article  CAS  PubMed  Google Scholar 

  • Gianfrancesco MA, Barcellos L (2016) Obesity and multiple sclerosis susceptibility: a review. J Neurol Neuromed 1(7):1–5

    Google Scholar 

  • Gianfrancesco MA, Acuna B, Shen L et al (2014) Obesity during childhood and adolescence increases susceptibility to multiple sclerosis after accounting for established genetic and environmental risk factors. Obes Res Clin Pract 8(5):e435–e447

    Article  PubMed  PubMed Central  Google Scholar 

  • Glenn JD, Whartenby KA (2014) Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells 6(5):526–539

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham KL, Zabel BA, Loghavi S et al (2009) Chemokinelike receptor-1 expression by central nervous system-infiltrating leukocytes and involvement in a model of autoimmune demyelinating disease. J Immunol 183(10):6717–6723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero-García JJ, Carrera-Quintanar L, López-Roa RI et al (2016) Multiple sclerosis and obesity: possible roles of adipokines. Mediat Inflamm 2016:4036232

    Article  Google Scholar 

  • Guillemot-Legris O, Muccioli GG (2017) Obesity induced neuroinflammation beyond the hypothalamus. Trends Neurosci 40(4):237–253

    Article  CAS  PubMed  Google Scholar 

  • Hedstrom AK, Olsson T, Alfredsson L (2012) High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult Scler 18(9):1334–1336

    Article  PubMed  Google Scholar 

  • Hedström AK, Lima Bomfim I, Barcellos L et al (2014) Interaction between adolescent obesity and HLA risk genes in the etiology of multiple sclerosis. Neurology 82(10):865–872

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedström AK, Lima Bomfim I, Hillert J et al (2015) Obesity interacts with infectious mononucleosis in risk of multiple sclerosis. Eur J Neurol 22(3):578–e38

    Article  PubMed  Google Scholar 

  • Hedstrom AK, Olsson T, Alfredsson L (2016) Body mass index during adolescence, rather than childhood, is critical in determining MS risk. Mult Scler 22(7):878–883

    Article  CAS  PubMed  Google Scholar 

  • Hemmer B, Kerschensteiner M, Korn T (2015) Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 14(4):406–419

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477

    Article  CAS  PubMed  Google Scholar 

  • Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16(6):358–372

    Article  CAS  PubMed  Google Scholar 

  • Hietaharju A, Kuusisto H, Nieminen R et al (2010) Elevated cerebrospinal fluid adiponectin and adipsin levels in patients with multiple sclerosis: a Finnish co-twin study. Eur J Neurol 17(2):332–334

    Article  CAS  PubMed  Google Scholar 

  • Hossein-Nezhad A, Varzaneh FN, Mirzaei K et al (2013) A polymorphism in the resistin gene promoter and the risk of multiple sclerosis. Minerva Med 104(4):431–438

    CAS  PubMed  Google Scholar 

  • Howell OW, Reeves CA, Nicholas R et al (2011) Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134(9):2755–2771

    Article  PubMed  Google Scholar 

  • Kanoski SE, Zhang Y, Zheng W et al (2010) The effects of a high-energy diet on hippocampal function and blood–brain barrier integrity in the rat. J Alzheimers Dis 21(1):207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana SR, Bamer AM, Turner AP et al (2009) The prevalence of overweight and obesity in veterans with multiple sclerosis. Am J Phys Med Rehabil 88(2):83–91

    Article  PubMed  Google Scholar 

  • Kraszula L, Jasińska A, Eusebio M et al (2012) Evaluation of the relationship between leptin, resistin, adiponectin and natural regulatory T cells in relapsing-remitting multiple sclerosis. Neurol Neurochir Pol 46(1):22–28

    CAS  PubMed  Google Scholar 

  • Lande R, Gafa V, Serafini B et al (2008) Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-β. J Neuropathol Exp Neurol 67(5):388–401

    Google Scholar 

  • Langer-Gould A, Brara SM, Beaber BE et al (2013) Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology 80(6):548–552

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo JC, Ljubicic S, Leibiger B et al (2014) Adipsin is an adipokine that improves β cell function in diabetes. Cell 158(1):41–53

    Google Scholar 

  • Lock C, Hermans G, Pedotti R et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508

    Article  CAS  PubMed  Google Scholar 

  • Lord GM, Matarese G, Howard JK et al (2002) Leptin inhibits the anti-CD3-driven proliferation of peripheral blood T cells but enhances the production of proinflammatory cytokines. J Leukoc Biol 72(2):330–338

    CAS  PubMed  Google Scholar 

  • Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121:2111–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda K, Yasuda M, Kaneda H et al (1994) Cerebrospinal fluid (CSF) neuropeptide Y- and somatostatin-like immunoreactivities in man. Neuropeptides 27:323–332

    Article  CAS  PubMed  Google Scholar 

  • Mähler A, Steiniger J, Bock M et al (2012) Is metabolic flexibility altered in multiple sclerosis patients? PLoS One 7:e43675

    Article  PubMed  PubMed Central  Google Scholar 

  • Markianos M, Evangelopoulos ME, Koutsis G et al (2013) Body Mass Index in Multiple Sclerosis: Associations with CSF Neurotransmitter Metabolite Levels. ISRN Neurol 2013:981070

    Article  PubMed  PubMed Central  Google Scholar 

  • Marrie RA, Horwitz R, Cutter G et al (2009) High frequency of adverse health behaviors in multiple sclerosis. Mult Scler 15(1):105–113

    Article  PubMed  Google Scholar 

  • Marrie RA, Rudick R, Horwitz R et al (2010) Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis. Neurology 74(13):1041–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrie RA, Horwitz R, Cutter G et al (2011) Association between comorbidity and clinical characteristics of MS. Acta Neurol Scand 124(2):135–141

    Article  CAS  PubMed  Google Scholar 

  • Matarese G, Di Giacomo A, Sanna V et al (2001) Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol 166:5909–5916

    Article  CAS  PubMed  Google Scholar 

  • Matarese G, Carrieri PB, La Cava A et al (2005) Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25+ regulatory T cells. Proc Natl Acad Sci U S A 102(14):5150–5155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayo L, Trauger SA, Blain M et al (2014) Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 20(10):1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messina S, Vargas-Lowy D, Musallam A et al (2013) Increased leptin and A-FABP levels in relapsing and progressive forms of MS. BMC Neurol 13:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Minagar A, Jy W, Jimenez JJ et al (2006) Multiple sclerosis as a vascular disease. Neurol Res 28(3):230–235

    Article  CAS  PubMed  Google Scholar 

  • Moschen AR, Kaser A, Enrich B et al (2007) Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol 178(3):1748–1758

    Article  CAS  PubMed  Google Scholar 

  • Munger KL, Chitnis T, Ascherio A (2009) Body size and risk of MS in two cohorts of US women. Neurology 73(19):1543–1550

    Article  PubMed  PubMed Central  Google Scholar 

  • Munger KL, Bentzen J, Laursen B et al (2013) Childhood body mass index and multiple sclerosis risk: a long-term cohort study. Mult Scler 19(10):1323–1329

    Article  PubMed  PubMed Central  Google Scholar 

  • Musabak U, Demirkaya S, Genç G et al (2011) Serum adiponectin, TNF-α, IL-12p70, and IL-13 levels in multiple sclerosis and the effects of different therapy regimens. Neuroimmunomodulation 18(1):57–66

    Google Scholar 

  • Natarajan R, Hagman S, Hämälainen M et al (2015) Adipsin is associated with multiple sclerosis: a follow-up study of adipokines. Mult Scler Int 2015:371734

    Google Scholar 

  • Neuparth MJ, Proença JB, Santos-Silva A et al (2013) Adipokines, oxidized low-density lipoprotein, and C reactive protein levels in lean, overweight, and obese Portuguese patients with type 2 diabetes. ISRN Obes 2013:142097

    PubMed  PubMed Central  Google Scholar 

  • Neuteboom RF, Verbraak E, Voerman JSA et al (2009) Serum leptin levels during pregnancy in multiple sclerosis. Mult Scler 15(8):907–912

    Article  CAS  PubMed  Google Scholar 

  • Nieva-Vazquez A, Perez-Fuentes R, Torres-Rasgado E et al (2014) Serum resistin levels are associated with adiposity and insulin sensitivity in obese Hispanic subjects. Metab Syndr Relat Disord 12(2):143–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira SR, Simão AN, Kallaur AP et al (2014) Disability in patients with multiple sclerosis: influence of insulin resistance, adiposity, and oxidative stress. Nutrition 30(3):268–273

    Article  CAS  PubMed  Google Scholar 

  • Palavra F, Marado D, Mascarenhas-Melo F et al (2013) New markers of early cardiovascular risk in multiple sclerosis patients: oxidized-LDL correlates with clinical staging. Dis Markers 34:341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palavra F, Almeida L, Ambrósio AF et al (2016) Obesity and brain inflammation: a focus on multiple sclerosis. Obes Rev 17(3):211–224

    Article  CAS  PubMed  Google Scholar 

  • Peterson LK, Fujinami RS (2007) Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmunol 184(1–2):37–44

    Article  CAS  PubMed  Google Scholar 

  • Piccio L, Stark JL, Cross AH (2008) Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol 84(4):940–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccio L, Cantoni C, Henderson JG et al (2013) Lack of adiponectin leads to increased lymphocyte activation and increased disease severity in a mouse model of multiple sclerosis. Eur J Immunol 43(8):2089–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieper C, Pieloch P, Galla HJ (2013) Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood–brain barrier. Brain Res 1524:1–11

    Article  CAS  PubMed  Google Scholar 

  • Pieper C, Marek JJ, Unterberg M et al (2014) Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res 1550:1–8

    Article  CAS  PubMed  Google Scholar 

  • Pilutti LA, McAuley E, Motl RW (2012) Weight status and disability in multiple sclerosis: an examination of bi-directional associations over a 24-month period. Mult Scler Relat Disord 1:139–144

    Article  PubMed  Google Scholar 

  • Reinhold D, Kahne T, Steinbrecher A et al (2002) The role of dipeptidyl peptidase IV (DP IV) enzymatic activity in T cell activation and autoimmunity. Biol Chem 383:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Rotondi M, Batocchi AP, Coperchini F et al (2013) Severe disability in patients with relapsing-remitting multiple sclerosis is associated with profound changes in the regulation of leptin secretion. Neuroimmunomodulation 20(6):341–347

    Article  CAS  PubMed  Google Scholar 

  • Saad MF, Damani S, Gingerich RL et al (1997) Sexual dimorphism in plasma leptin concentration. J Clin Endocrinol Metab 82(2):579–584

    CAS  PubMed  Google Scholar 

  • Sanna V, Di Giacomo A, La Cava A et al (2003) Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J Clin Invest 111(2):241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathyapalan T, Shepherd J, Arnett C et al (2010) Atorvastatin increases 25-hydroxy vitamin D concentrations in patients with polycystic ovary syndrome. Clin Chem 56:1696–1700

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Hochberg A, Berghoff M et al (2016) Quantification and regulation of adipsin in human cerebrospinal fluid (CSF). Clin Endocrinol 84(2):194–202

    Article  CAS  Google Scholar 

  • Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13(3):206–218

    Article  CAS  PubMed  Google Scholar 

  • Simpson KA, Martin NM, Bloom SR (2009) Hypothalamic regulation of food intake and clinical therapeutic applications. Arq Bras Endocrinol Metabol 53:120–128

    Article  PubMed  Google Scholar 

  • Sioka C, Fotopoulos A, Georgiou A et al (2011) Body composition in ambulatory patients with multiple sclerosis. J Clin Densitom 14(4):465–470

    Article  PubMed  Google Scholar 

  • Slawta JN, Wilcox AR, McCubbin JA et al (2003) Health behaviors, body composition, and coronary heart disease risk in women with multiple sclerosis. Arch Phys Med Rehabil 84(12):1823–1830

    Article  PubMed  Google Scholar 

  • Steinbrecher A, Reinhold D, Quigley L et al (2001) Targeting dipeptidyl peptidase IV (CD26) suppresses autoimmune encephalomyelitis and up-regulates TGF-beta 1 secretion in vivo. J Immunol 166:2041–2048

    Article  CAS  PubMed  Google Scholar 

  • Stranahan AM, Hao S, Dey A et al (2016) Blood–brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J Cereb Blood Flow Metab 36:2108–2121

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  • Strong AL, Bowles AC, Wise RM et al (2016) Human adipose stromal/stem cells from obese donors show reduced efficacy in halting disease progression in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Stem Cells 34(3):614–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tettey P, Simpson S Jr, Taylor B et al (2014a) An adverse lipid profile is associated with disability and progression in disability in people with MS. Mult Scler 20:1737–1744

    Article  CAS  PubMed  Google Scholar 

  • Tettey P, Simpson S Jr, Taylor B et al (2014b) Adverse lipid profile is not associated with relapse risk in MS: results from an observational cohort study. J Neurol Sci 340:230–232

    Google Scholar 

  • Thaler JP, Guyenet SJ, Dorfman MD et al (2013) Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes 62:2629–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomalka-Kochanowska J, Baranowska B, Wolinska-Witort E et al (2014) Plasma chemerin levels in patients with multiple sclerosis. Neuro Endocrinol Lett 35(3):218–223

    CAS  PubMed  Google Scholar 

  • Traka M, Podojil JR, McCarthy DP et al (2016) Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci 19(1):65–74

    Article  CAS  PubMed  Google Scholar 

  • Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  CAS  PubMed  Google Scholar 

  • Valdearcos M, Robblee MM, Benjamin DI et al (2014) Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9:2124–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstock-Guttman B, Zivadinov R, Mahfooz N et al (2011a) Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J Neuroinflammation 4(8):127

    Article  Google Scholar 

  • Weinstock-Guttman B, Zivadinov R, Ramanathan M (2011b) Inter-dependence of vitamin D levels with serum lipid profiles in multiple sclerosis. J Neurol Sci 311:86–91

    Article  CAS  PubMed  Google Scholar 

  • Wilk S, Scheibenbogen C, Bauer S et al (2011) Adiponectin is a negative regulator of antigen-activated T cells. Eur J Immunol 41(8):2323–2332

    Article  CAS  PubMed  Google Scholar 

  • Williams G, Harrold JA, Cutler DJ (2000) The hypothalamus and the regulation of energy homeostasis: lifting the lid on a black box. Proc Nutr Soc 59(3):385–396

    Article  CAS  PubMed  Google Scholar 

  • Yousefi F, Ebtekar M, Soleimani M et al (2013) Comparison of in vivo immunomodulatory effects of intravenous and intraperitoneal administration of adipose tissue mesenchymal stem cells in experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 17(3):608–616

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Bowles AC, Semon JA et al (2014) Transplantation of autologous adipose stem cells lacks therapeutic efficacy in the experimental autoimmune encephalomyelitis model. PLoS One 9(1):e85007

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sónia Batista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Novo, A.M., Batista, S. (2017). Multiple Sclerosis: Implications of Obesity in Neuroinflammation. In: Letra, L., Seiça, R. (eds) Obesity and Brain Function. Advances in Neurobiology, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-63260-5_8

Download citation

Publish with us

Policies and ethics