Skip to main content

Computer Simulation and Optimization

  • Chapter
  • First Online:
Handbook of Disaster Research

Part of the book series: Handbooks of Sociology and Social Research ((HSSR))

Abstract

Computer simulation and optimization are mathematical modeling methods designed to provide analysis and decision support for systems-level problems, particularly those involving great uncertainty. They are thus well-suited to and increasingly used in disaster applications. Proper implementation of the methods can benefit greatly from collaboration with social scientists, particularly in the formulation and interpretation phases of the modeling process. This chapter offers a high-level introduction that aims to equip readers with a vocabulary and understanding of simulation and optimization to encourage and enable them to participate effectively on disaster projects involving these methods. Specifically, we provide an overview of engineering mathematical models in general, and for each specific method, we describe the basics of how it works, types, strengths and limitations, and examples applications in disaster research. The opportunities and potential challenges of increased collaboration between social scientists and engineers around the use of computer simulation and optimization are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A random variable is a variable that can take on different possible values each with an associated probability. It is represented by a probability distribution—a probability mass function (pmf) if discrete, or a probability density function (pdf) if continuous.

References

  • Aguirre, B., El-Tawil, S., Best, E., Gill, K., & Federov, V. (2011). Contributions of social science to agent-based models of building evacuation. Contemporary Social Science, 6(3), 415–432.

    Article  Google Scholar 

  • Altay, N., & Green, W. G. (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175(1), 475–493.

    Article  Google Scholar 

  • Apivatanagul, P., Davidson, R., & Nozick, L. (2012). Bi-level optimization for risk-based regional hurricane evacuation planning. Natural Hazards, 60(2), 567–588.

    Article  Google Scholar 

  • Arboleda, C. A., Abraham, D. M., & Lubitz, R. (2007). Simulation as a tool to assess the vulnerability of the operation of a health care facility. Journal of Performance of Constructed Facilities, 21(4), 302–312.

    Article  Google Scholar 

  • Bender, E. A. (2000). An introduction to mathematical modeling. Mineola, NY, USA: Dover Pub. (unabridged reprint of first edition from 1978, New York: Wiley).

    Google Scholar 

  • Bertsimas, D., & Tsitsiklis, J. (1997). Introduction to linear optimization (Vol. 6). Belmont, MA, USA: Athena Scientific.

    Google Scholar 

  • Blaikie, P., Cannon, T., Davis, I., & Wisner, B. (2014). At risk: Natural hazards, people’s vulnerability and disasters. Routledge.

    Google Scholar 

  • Bocchini, P., & Frangopol, D. M. (2012). Optimal resilience-and cost-based postdisaster intervention prioritization for bridges along a highway segment. Journal of Bridge Engineering, 17(1), 117–129.

    Article  Google Scholar 

  • Bogárdi, I., & Balogh, E. (2014). Floodway system operation along levee-protected rivers. Journal of Water Resources Planning and Management, 140(8), 04014014.

    Article  Google Scholar 

  • Bristow, E. C., & Brumbelow, K. (2013). Simulation to aid disaster planning and mitigation: Tools and techniques for water distribution managers and emergency planners. Journal of Water Resources Planning and Management, 139(4), 376–386.

    Article  Google Scholar 

  • Cai, X., Zeng, R., Kang, W. H., Song, J., & Valocchi, A. J. (2015). Strategic planning for drought mitigation under climate change. Journal of Water Resources Planning and Management, 141(9), 04015004.

    Article  Google Scholar 

  • Caunhye, A. M., Nie, X., & Pokharel, S. (2012). Optimization models in emergency logistics: A literature review. Socio-economic Planning Sciences, 46(1), 4–13.

    Article  Google Scholar 

  • Chandrasekaran, S., & Banerjee, S. (2016). Retrofit optimization for resilience enhancement of bridges under multihazard scenario. Journal of Structural Engineering, 142(8), C4015012.

    Article  Google Scholar 

  • Chang, L., Peng, F., Ouyang, Y., Elnashai, A. S., & Spencer, B. F., Jr. (2012). Bridge seismic retrofit program planning to maximize postearthquake transportation network capacity. Journal of Infrastructure Systems, 18(2), 75–88.

    Article  Google Scholar 

  • Chiu, Y. C., Zheng, H., Villalobos, J. A., Peacock, W., & Henk, R. (2008). Evaluating regional contra-flow and phased evacuation strategies for Texas using a large-scale dynamic traffic simulation and assignment approach. Journal of Homeland Security and Emergency Management, 5(1), Article 34.

    Google Scholar 

  • Chu, J. C., & Chen, S. C. (2016). Optimization of transportation-infrastructure-system protection considering weighted connectivity reliability. Journal of Infrastructure Systems, 22(1), 04015008.

    Article  Google Scholar 

  • Crowley, H., & Bommer, J. J. (2006). Modelling seismic hazard in earthquake loss models with spatially distributed exposure. Bulletin of Earthquake Engineering, 4(3), 249–273.

    Google Scholar 

  • Davidson, R. (2015). Integrating disciplinary contributions to achieve community resilience to natural disasters. Civil Engineering and Environmental Systems, Special Issue on Resilience, 32(1–2), 55–67.

    Article  Google Scholar 

  • Dodo, A., Xu, N., Davidson, R. A., & Nozick, L. K. (2005). Optimizing regional earthquake mitigation investment strategies. Earthquake Spectra, 21(2), 305–327.

    Article  Google Scholar 

  • El-Anwar, O., El-Rayes, K., & Elnashai, A. (2009). Optimizing large-scale temporary housing arrangements after natural disasters. Journal of Computing in Civil Engineering, 23(2), 110–118.

    Article  Google Scholar 

  • El-Anwar, O., Ye, J., & Orabi, W. (2016). Efficient optimization of post-disaster reconstruction of transportation networks. Journal of Computing in Civil Engineering, 30(3), 04015047.

    Article  Google Scholar 

  • Fan, Y., Liu, C., Lee, R., & Kiremidjian, A. S. (2010). Highway network retrofit under seismic hazard. Journal of Infrastructure Systems, 16(3), 181–187.

    Google Scholar 

  • Federal Emergency Management Agency (FEMA). (2012). HAZUS-MH 2.1 Hurricane Model Technical Manual. Washington, D.C.

    Google Scholar 

  • Galindo, G., & Batta, R. (2013). Review of recent developments in OR/MS research in disaster operations management. European Journal of Operational Research, 230(2), 201–211.

    Article  Google Scholar 

  • Gillespie, D. F., Robards, K. J., & Cho, S. (2004). Designing safe systems: Using system dynamics to understand complexity. Natural Hazards Review, 5(2), 82–88.

    Article  Google Scholar 

  • Hamid, S., Kibria, B. G., Gulati, S., Powell, M., Annane, B., Cocke, S., … Chen, S. C. (2010). Predicting losses of residential structures in the state of Florida by the public hurricane loss evaluation model. Statistical Methodology, 7(5), 552–573.

    Google Scholar 

  • Hillier, F. S., & Lieberman, G. J. (2001). Introduction to operations research. New York, NY, USA: McGraw Hill.

    Google Scholar 

  • Hobeika, A. G., & Kim, C. (1998). Comparison of traffic assignments in evacuation modeling. IEEE Transactions on Engineering Management, 45(2), 192–198.

    Article  Google Scholar 

  • Holland, G. J. (1980). An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108(8), 1212–1218.

    Article  Google Scholar 

  • Horner, M. W., & Downs, J. A. (2010). Optimizing hurricane disaster relief goods distribution: Model development and application with respect to planning strategies. Disasters, 34(3), 821–844.

    Article  Google Scholar 

  • Hoyos, M. C., Morales, R. S., & Akhavan-Tabatabaei, R. (2015). OR models with stochastic components in disaster operations management: A literature survey. Computers & Industrial Engineering, 82, 183–197.

    Article  Google Scholar 

  • Huang, Y., & Pang, W. (2014). Optimization of resilient biofuel infrastructure systems under natural hazards. Journal of Energy Engineering, 140(2), 04013017.

    Article  Google Scholar 

  • Hwang, S., Park, M., Lee, H. S., & Lee, S. (2016). Hybrid simulation framework for immediate facility restoration planning after a catastrophic disaster. Journal of Construction Engineering and Management, 04016026.

    Google Scholar 

  • Jain, V. K., Davidson, R., & Rosowsky, D. (2005). Modeling changes in hurricane risk over time. Natural Hazards Review, 6(2), 88–96.

    Article  Google Scholar 

  • Jensen, P., & Bard, J. (2003). Operations research models and methods. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Jia, H., Ordóñez, F., & Dessouky, M. (2007). A modeling framework for facility location of medical services for large-scale emergencies. IIE Transactions, 39(1), 41–55.

    Article  Google Scholar 

  • Kalos, M., & Whitlock, P. (2008). Monte Carlo methods (2nd ed.). Wiley-VCH Verlag.

    Google Scholar 

  • Karamouz, M., & Araghinejad, S. (2008). Drought mitigation through long-term operation of reservoirs: Case study. Journal of Irrigation and Drainage Engineering, 134(4), 471–478.

    Article  Google Scholar 

  • Kesete, Y., Peng, J., Gao, Y., Shan, X., Davidson, R., Nozick, L., et al. (2014). Modeling insurer-homeowner interactions in managing natural disaster risk. Risk Analysis, 34(6), 1040–1055.

    Article  Google Scholar 

  • Kunreuther, H. (2006). Disaster mitigation and insurance: Learning from Katrina. Annals of the American Academy of Political and Social Science, 604, 208–227.

    Article  Google Scholar 

  • Kunreuther, H., Onculer, A., & Slovic, P. (1998). Time insensitivity for protective measures. Journal of Risk and Uncertainty, 16, 279–299.

    Article  Google Scholar 

  • Law, A., & Kelton, D. (2000). Simulation modeling and analysis (3rd ed.). Boston, MA, USA: McGraw-Hill.

    Google Scholar 

  • Lee, S. W., & Davidson, R. A. (2010). Physics-based simulation model of post-earthquake fire spread. Journal of Earthquake Engineering, 14(5), 670–687.

    Article  Google Scholar 

  • Legg, M., Davidson, R. A., & Nozick, L. K. (2013). Optimization-based regional hurricane mitigation planning. Journal of Infrastructure Systems, 19(1), 1–11.

    Article  Google Scholar 

  • Leon, A. S., Kanashiro, E. A., Valverde, R., & Sridhar, V. (2014). Dynamic framework for intelligent control of river flooding: Case study. Journal of Water Resources Planning and Management, 140(2), 258–268.

    Article  Google Scholar 

  • Liberatore, F., Pizarro, C., de Blas, C. S., Ortuño, M. T., & Vitoriano, B. (2013). Uncertainty in humanitarian logistics for disaster management. A review. In Decision aid models for disaster management and emergencies (pp. 45–74). Atlantis Press.

    Google Scholar 

  • Lindell, M., & Perry, R. (2000). Household adjustment to earthquake hazard: A review of research. Environment and Behavior, 32(4), 461–501.

    Article  Google Scholar 

  • Lindell, M., & Perry, R. (2012). The protective action decision model: Theoretical modifications and additional evidence. Risk Analysis, 32(4), 616–632.

    Article  Google Scholar 

  • Lindell, M. K., & Prater, C. S. (2007). Critical behavioral assumptions in evacuation time estimate analysis for private vehicles: Examples from hurricane research and planning. Journal of Urban Planning and Development, 133(1), 18–29.

    Article  Google Scholar 

  • Liu, Z., Jacques, C. C., Szyniszewski, S., Guest, J. K., Schafer, B. W., Igusa, T., et al. (2016). Agent-based simulation of building evacuation after an earthquake: Coupling human behavior with structural response. Natural Hazards Review, 17(1), 04015019.

    Article  Google Scholar 

  • Lo, S. M., Huang, H. C., Wang, P., & Yuen, K. K. (2006). A game theory based exit selection model for evacuation. Fire Safety Journal, 41(5), 364–369.

    Article  Google Scholar 

  • Loggins, R. A., & Wallace, W. A. (2015). Rapid assessment of hurricane damage and disruption to interdependent civil infrastructure systems. Journal of Infrastructure Systems, 21(4), 04015005.

    Article  Google Scholar 

  • Luna, R., Balakrishnan, N., & Dagli, C. H. (2011). Postearthquake recovery of a water distribution system: Discrete event simulation using colored petri nets. Journal of Infrastructure Systems, 17(1), 25–34.

    Article  Google Scholar 

  • Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal of Simulation, 4(3), 151–162.

    Article  Google Scholar 

  • Manopiniwes, W., & Irohara, T. (2014). A review of relief supply chain optimization. Industrial Engineering and Management Systems, 13(1), 1–14.

    Article  Google Scholar 

  • Manzour, H., Davidson, R., Horspool, N., & Nozick, L. (2016). Seismic hazard and loss analysis for spatially distributed infrastructure in Christchurch, New Zealand. Earthquake Spectra, 32(2), 697–712.

    Article  Google Scholar 

  • McClelland, G., Schulze, W., & Coursey, D. (1993). Insurance for low-probability hazards: A bimodal response to unlikely events. Journal of Risk and Uncertainty, 7, 95–116.

    Article  Google Scholar 

  • McHaney, R. (1991). Computer simulation: A practical perspective. San Diego, CA, USA: Academic Press.

    Google Scholar 

  • Meng, Q., & Khoo, H. L. (2008). Optimizing contra flow scheduling problem: Model and algorithm. Journal of Intelligent Transportation Systems, 12(3), 126–138.

    Article  Google Scholar 

  • Mensah, A. F., & Dueñas-Osorio, L. (2016). Efficient resilience assessment framework for electric power systems affected by hurricane events. Journal of Structural Engineering, 142(8), C4015013.

    Article  Google Scholar 

  • Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335–341.

    Article  Google Scholar 

  • Miller-Hooks, E., Zhang, X., & Faturechi, R. (2012). Measuring and maximizing resilience of freight transportation networks. Computers & Operations Research, 39(7), 1633–1643.

    Article  Google Scholar 

  • Murthy, D. P., Page, N. W., & Rodin, E. Y. (1990). Mathematical modelling: A tool for problem solving in engineering, physical, biological, and social sciences. Pergamon.

    Google Scholar 

  • Ng, M., Park, J., & Waller, S. T. (2010). A hybrid bilevel model for the optimal shelter assignment in emergency evacuations. Computer-Aided Civil and Infrastructure Engineering, 25(8), 547–556.

    Article  Google Scholar 

  • Ouyang, M. (2014). Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering & System Safety, 121, 43–60.

    Article  Google Scholar 

  • Park, Y. J., Glagola, C. R., Gurley, K. R., & Son, K. (2014). Performance assessment of the Florida electric-power network system against hurricanes. Natural Hazards Review, 15(3), 04014003.

    Article  Google Scholar 

  • Peacock, W. (2003). Hurricane mitigation status and factors influencing mitigation status among Florida’s single-family homeowners. Natural Hazards Review, 4(3), 149–158.

    Article  Google Scholar 

  • Peres, E. Q., Brito Jr., I., Leiras, A., & Yoshizaki, H. (2012). Humanitarian logistics and disaster relief research: Trends, applications, and future research directions. In Proceedings of the 4th International Conference on Information Systems, Logistics and Supply Chain (pp. 26–29).

    Google Scholar 

  • Pidd, M. (1998). Computer simulation in management science (4th ed.). New York, NY, USA: Wiley.

    Google Scholar 

  • Pita, G., Pinelli, J. P., Gurley, K., & Mitrani-Reiser, J. (2015). State of the art of hurricane vulnerability estimation methods: A review. Natural Hazards Review, 16(2), 04014022.

    Article  Google Scholar 

  • Porter, K. A., Kiremidjian, A. S., & LeGrue, J. S. (2001). Assembly-based vulnerability of buildings and its use in performance evaluation. Earthquake Spectra, 17(2), 291–312.

    Article  Google Scholar 

  • Rathi, A. K., & Solanki, R. S. (1993, December). Simulation of traffic flow during emergency evacuations: a microcomputer based modeling system. In Proceedings of the 25th Conference on Winter simulation (pp. 1250–1258). ACM.

    Google Scholar 

  • Rawls, C. G., & Turnquist, M. A. (2010). Pre-positioning of emergency supplies for disaster response. Transportation Research Part B: Methodological, 44(4), 521–534.

    Article  Google Scholar 

  • Ripley, B. I. (1987). Stochastic simulation. New York, NY, USA: Wiley.

    Book  Google Scholar 

  • Romero, N. R., Nozick, L. K., Dobson, I. D., Xu, N., & Jones, D. A. (2013). Transmission and generation expansion to mitigate seismic risk. IEEE Transactions on Power Systems, 28(4), 3692–3701.

    Article  Google Scholar 

  • Sarker, R., & Newton, C. (2008). Optimization modelling: A practical approach. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Saxena, P. (2014). Modeling and simulation (2nd ed.). Oxford, UK: Alpha Science International.

    Google Scholar 

  • Sbayti, H., & Mahmassani, H. (2006). Optimal scheduling of evacuation operations. Transportation Research Record: Journal of the Transportation Research Board, 1964, 238–246.

    Article  Google Scholar 

  • Sheffi, Y., Mahmassani, H., & Powell, W. B. (1982). A transportation network evacuation model. Transportation Research Part A, Policy and Practice, 16(3), 209–218.

    Article  Google Scholar 

  • Shen, T.-S. (2005). ESM: A building evacuation simulation model. Building and Environment, 40, 671–680.

    Article  Google Scholar 

  • Shier, D. R., & Wallenius, K. T. (Eds.). (2000). Applied mathematical modeling: A multidisciplinary approach. CRC Press.

    Google Scholar 

  • Shiraki, N., Shinozuka, M., Moore, J. E., Chang, S. E., Kameda, H., & Tanaka, S. (2007). System risk curves: Probabilistic performance scenarios for highway networks subject to earthquake damage. Journal of Infrastructure Systems, 13(1), 43–54.

    Article  Google Scholar 

  • Siegfried, R. (2014). Modeling and simulation of complex systems: A framework for efficient agent-based modeling and simulation. Wiesbaden: Springer Vieweg.

    Book  Google Scholar 

  • Sobol, I. M. (1994). A primer for the Monte Carlo method. CRC press.

    Google Scholar 

  • Sokolowski, J., & Banks, C. (Eds.). (2010). Modeling and simulation fundamentals: Theoretical underpinnings and practical domains. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. Boston, MA, USA: Irwin McGraw-Hill.

    Google Scholar 

  • Swain, J. (2015). Simulated worlds: Driven by questions, fueled by thought and realized by simulation. OR/MS Today, 42(5), 1038–1085.

    Google Scholar 

  • Tabucchi, T., Davidson, R., & Brink, S. (2010). Simulation of postearthquake water supply system restoration. Civil Engineering and Environmental Systems, 27(4), 263–279.

    Article  Google Scholar 

  • Theodoulou, G., & Wolshon, B. (2004). Alternative methods to increase the effectiveness of freeway contraflow evacuation. Transportation Research Record: Journal of the Transportation Research Board, 1865, 48–56.

    Article  Google Scholar 

  • Trainor, J. E., Murray-Tuite, P., Edara, P., Fallah-Fini, S., & Triantis, K. (2013). Interdisciplinary approach to evacuation modeling. Natural Hazards Review, 14(3), 151–162.

    Article  Google Scholar 

  • Tufekci, S., & Kisko, T. M. (1991). Regional evacuation modeling system (REMS): A decision support system for emergency area evacuations. Computers & Industrial Engineering, 21(1–4), 89–93.

    Article  Google Scholar 

  • Tzeng, G. H., Cheng, H. J., & Huang, T. D. (2007). Multi-objective optimal planning for designing relief delivery systems. Transportation Research Part E: Logistics and Transportation Review, 43(6), 673–686.

    Article  Google Scholar 

  • Vaziri, P., Davidson, R., Nozick, L., & Hosseini, M. (2010). Resource allocation for regional earthquake risk mitigation: A case study of Tehran, Iran. Natural Hazards, 53(3), 527–546.

    Article  Google Scholar 

  • Velten, K. (2009). Mathematical modeling and simulation: Introduction for scientists and engineers. Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Vickery, P. J., Skerlj, P. F., Lin, J., Twisdale, L. A., Jr., Young, M. A., & Lavelle, F. M. (2006). HAZUS-MH hurricane model methodology. II: Damage and loss estimation. Natural Hazards Review, 7(2), 94–103.

    Article  Google Scholar 

  • Vickery, P. J., Skerlj, P. F., & Twisdale, L. A. (2000). Simulation of hurricane risk in the US using empirical track model. Journal of Structural Engineering, 126(10), 1222–1237.

    Article  Google Scholar 

  • Wilmot, C., & Mei, B. (2004). Comparison of alternative trip generation models for hurricane evacuation. Natural Hazards Review, 5(4), 170–178.

    Article  Google Scholar 

  • Wu, H.-C., Lindell, M. K., & Prater, C. S. (2015). Strike probability judgments and protective action recommendations in a dynamic hurricane tracking task. Natural Hazards, 79(1), 355–380.

    Article  Google Scholar 

  • Xiaoping, Z., Tingkuan, Z., & Mengting, L. (2009). Modeling crowd evacuation of a building based on seven methodological approaches. Building and Environment, 44, 437–445.

    Article  Google Scholar 

  • Xie, C., & Turnquist, M. A. (2011). Lane-based evacuation network optimization: An integrated Lagrangian relaxation and tabu search approach. Transportation Research Part C: Emerging Technologies, 19(1), 40–63.

    Article  Google Scholar 

  • Xu, N., Guikema, S. D., Davidson, R. A., Nozick, L. K., ÇaÄŸnan, Z., & Vaziri, K. (2007). Optimizing scheduling of post-earthquake electric power restoration tasks. Earthquake Engineering and Structural Dynamics, 36(2), 265–284.

    Article  Google Scholar 

  • Yuan, F., Han, L., Chin, S. M., & Hwang, H. (2006). Proposed framework for simultaneous optimization of evacuation traffic destination and route assignment. Transportation Research Record: Journal of the Transportation Research Board, 1964, 50–58.

    Article  Google Scholar 

  • Yusta, J. M., Correa, G. J., & Lacal-Arántegui, R. (2011). Methodologies and applications for critical infrastructure protection: State-of-the-art. Energy Policy, 39(10), 6100–6119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel A. Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davidson, R.A., Nozick, L.K. (2018). Computer Simulation and Optimization. In: Rodríguez, H., Donner, W., Trainor, J. (eds) Handbook of Disaster Research. Handbooks of Sociology and Social Research. Springer, Cham. https://doi.org/10.1007/978-3-319-63254-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63254-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63253-7

  • Online ISBN: 978-3-319-63254-4

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics