Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 967))

Abstract

Oxidative and antioxidative system of cells and tissues maintains a balanced state under physiological conditions. A disruption in this balance of redox status has been associated with numerous pathological processes. Reactive oxygen species (ROS) as a major redox signaling generates in a spatiotemporally dependent manner. Subcellular organelles such as mitochondria, endoplasmic reticulum, plasma membrane and nuclei contribute to the production of ROS. In addition to downstream effects of ROS signaling regulated by average ROS changes in cytoplasm, whether subcelluar ROS mediate biological effect(s) has drawn greater attentions. With the advance in redox-sensitive probes targeted to different subcellular compartments, the investigation of subcellular ROS signaling and its associated cellular function has become feasible. In this review, we discuss the subcellular ROS signaling, with particular focus on mechanisms of subcellular ROS production and its downstream effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blaser, H., Dostert, C., Mak, T. W., & Brenner, D. (2016). TNF and ROS crosstalk in inflammation. Trends in Cell Biology, 26(4), 249–261.

    Article  CAS  PubMed  Google Scholar 

  2. Finkel, T. (2011). Signal transduction by reactive oxygen species. The Journal of Cell Biology, 194(1), 7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Booth, D. M., Joseph, S. K., & Hajnóczky, G. (2016). Subcellular ROS imaging methods: Relevance for the study of calcium signaling. Cell Calcium, 60(2), 65–73. pii: S0143-4160(16)30065-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaludercic, N., Deshwal, S., & Di Lisa, F. (2014). Reactive oxygen species and redox compartmentalization. Frontiers in Physiology, 5, 285.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247.

    Article  CAS  PubMed  Google Scholar 

  6. Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11–26.

    Article  CAS  PubMed  Google Scholar 

  7. Hansford, R. G., Hogue, B. A., & Mildaziene, V. (1997). Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. Journal of Bioenergetics and Biomembranes, 29(1), 89–95.

    Article  CAS  PubMed  Google Scholar 

  8. Raha, S., & Robinson, B. H. (2001). Mitochondria, oxygen free radicals, and apoptosis. American Journal of Medical Genetics, 106(1), 62–70.

    Article  CAS  PubMed  Google Scholar 

  9. Robinson, B. H. (1998). Human complex I deficiency: Clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochimica et Biophysica Acta, 1364(2), 271–286.

    Article  CAS  PubMed  Google Scholar 

  10. Benzi, G., Pastoris, O., & Dossena, M. (1982). Relationships between gamma-aminobutyrate and succinate cycles during and after cerebral ischemia. Journal of Neuroscience Research, 7(2), 193–201.

    Article  CAS  PubMed  Google Scholar 

  11. Sato, K., Kashiwaya, Y., Keon, C. A., Tsuchiya, N., King, M. T., Radda, G. K., Chance, B., Clarke, K., & Veech, R. L. (1995). Insulin, ketone bodies, and mitochondrial energy transduction. FASEB Journal, J9, 651–658.

    Google Scholar 

  12. Wiesner, R. J., Rosen, P., & Grieshaber, M. K. (1988). Pathways of succinate formation and their contribution to improvement of cardiac function in the hypoxic rat heart. Biochemical Medicine and Metabolic Biology, 40(1), 19–34.

    Article  CAS  PubMed  Google Scholar 

  13. Korde, A. S., Yadav, V. R., Zheng, Y. M., & Wang, Y. X. (2011). Primary role of mitochondrial Rieske iron-sulfur protein in hypoxic ROS production in pulmonary artery myocytes. Free Radical Biology & Medicine, 50(8), 945–952.

    Article  CAS  Google Scholar 

  14. Waypa, G. B., Guzy, R., Mungai, P. T., Mack, M. M., Marks, J. D., Roe, M. W., & Schumacker, P. T. (2006). Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circulation Research, 99(9), 970–978.

    Article  CAS  PubMed  Google Scholar 

  15. Rathore, R., Zheng, Y. M., Niu, C. F., Liu, Q. H., Korde, A., Ho, Y. S., & Wang, Y. X. (2008). Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radical Biology & Medicine, 45(9), 1223–1231.

    Article  CAS  Google Scholar 

  16. Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94(3), 909–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Block, K., Gorin, Y., & Abboud, H. E. (2009). Subcellular localization of Nox4 and regulation in diabetes. Proceedings of the National Academy of Sciences of the United States of America, 106(34), 14385–14390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuroda, J., Ago, T., Matsushima, S., Zhai, P., Schneider, M. D., & Sadoshima, J. (2010). NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15565–15570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rivera, J., Sobey, C. G., Walduck, A. K., & Drummond, G. R. (2010). Nox isoforms in vascular pathophysiology: Insights from transgenic and knockout mouse models. Redox Report, 15(2), 50–63.

    Article  CAS  PubMed  Google Scholar 

  20. Starkov, A. A. (2008). The role of mitochondria in reactive oxygen species metabolism and signaling. Annals of the New York Academy of Sciences, 1147(1), 37–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sandri, G., Panfili, E., & Ernster, L. (1990). Hydrogen peroxide production by monoamine oxidase in isolated rat-brain mitochondria: Its effect on glutathione levels and Ca2[1] efflux. Biochimica et Biophysica Acta, 1035(3), 300–305.

    Article  CAS  PubMed  Google Scholar 

  22. Bianchi, P., Kunduzova, O., Masini, E., Cambon, C., Bani, D., Raimondi, L., Seguelas, M. H., Nistri, S., Colucci, W., Leducq, N., & Parini, A. (2005). Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation, 112(21), 3297–3305.

    Article  CAS  PubMed  Google Scholar 

  23. Kaludercic, N., Carpi, A., Menabo, R., Di Lisa, F., & Paolocci, N. (2011). Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochimica et Biophysica Acta, 1813(7), 1323–1332.

    Article  CAS  PubMed  Google Scholar 

  24. Kunduzova, O. R., Bianchi, P., Parini, A., & Cambon, C. (2002). Hydrogen peroxide production by monoamine oxidase during ischemia/reperfusion. European Journal of Pharmacology, 448(2-3), 225–230.

    Article  CAS  PubMed  Google Scholar 

  25. Simonson, S. G., Zhang, J., Canada, A. T., Jr., Su, Y. F., Benveniste, H., & Piantadosi, C. A. (1993). Hydrogen peroxide production by monoamine oxidase during ischemia-reperfusion in the rat brain. Journal of Cerebral Blood Flow and Metabolism, 13(1), 125–134.

    Article  CAS  PubMed  Google Scholar 

  26. Mracek, T., Pecinova, A., Vrbacky, M., Drahota, Z., & Houstek, J. (2009). High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Archives of Biochemistry and Biophysics, 481(1), 30–36.

    Article  CAS  PubMed  Google Scholar 

  27. Drahota, Z., Chowdhury, S. K., Floryk, D., Mracek, T., Wilhelm, J., Rauchova, H., Lenaz, G., & Houstek, J. (2002). Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. Journal of Bioenergetics and Biomembranes, 34(2), 105–113.

    Article  CAS  PubMed  Google Scholar 

  28. Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., Lanfrancone, L., & Pelicci, P. G. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 402(6759), 309–313.

    Article  CAS  PubMed  Google Scholar 

  29. Orsini, F., Migliaccio, E., Moroni, M., Contursi, C., Raker, V. A., Piccini, D., Martin-Padura, I., Pelliccia, G., Trinei, M., Bono, M., Puri, C., Tacchetti, C., Ferrini, M., Mannucci, R., Nicoletti, I., Lanfrancone, L., Giorgio, M., & Pelicci, P. G. (2004). The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. The Journal of Biological Chemistry, 279(24), 25689–25695.

    Article  CAS  PubMed  Google Scholar 

  30. Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., Milia, E., Padura, I. M., Raker, V. A., Maccarana, M., Petronilli, V., Minucci, S., Bernardi, P., Lanfrancone, L., & Pelicci, P. G. (2002). A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene, 21(24), 3872–3878.

    Article  CAS  PubMed  Google Scholar 

  31. Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., Pelliccia, G., Luzi, L., Minucci, S., Marcaccio, M., Pinton, P., Rizzuto, R., Bernardi, P., Paolucci, F., & Pelicci, P. G. (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell, 122(2), 221–233.

    Article  CAS  PubMed  Google Scholar 

  32. Pacini, S., Pellegrini, M., Migliaccio, E., Patrussi, L., Ulivieri, C., Ventura, A., Carraro, F., Naldini, A., Lanfrancone, L., Pelicci, P., & Baldari, C. T. (2004). p66SHC promotes apoptosis and antagonizes mitogenic signaling in T cells. Molecular and Cellular Biology, 24(4), 1747–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pinton, P., Rimessi, A., Marchi, S., Orsini, F., Migliaccio, E., Giorgio, M., Contursi, C., Minucci, S., Mantovani, F., Wieckowski, M. R., Del Sal, G., Pelicci, P. G., & Rizzuto, R. (2007). Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science, 315(5812), 659–663.

    Article  CAS  PubMed  Google Scholar 

  34. Hamanaka, R. B., & Chandel, N. S. (2010). Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends in Biochemical Sciences, 35(9), 505–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ristow, M., & Zarse, K. (2010). How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis mitohormesis. Experimental Gerontology, 45(6), 410–418.

    Article  CAS  PubMed  Google Scholar 

  36. Yun, J., & Finkel, T. (2014). Mitohormesis. Cell Metabolism, 19(5), 757–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schulz, T. J., Zarse, K., Voigt, A., Urban, N., Birringer, M., & Ristow, M. (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metabolism, 6(4), 280–293.

    Article  CAS  PubMed  Google Scholar 

  38. Shadel, G. S., & Horvath, T. L. (2015). Mitochondrial ROS signaling in organismal homeostasis. Cell, 163(3), 560–569.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Weimer, S., Priebs, J., Kuhlow, D., Groth, M., Priebe, S., Mansfeld, J., Merry, T., Dubuis, S., Laube, B., Pfeiffer, A. F., Schulz, T. J., Guthke, R., Platzer, M., Zamboni, N., Zarse, K., & Ristow, M. (2014). D-glucosamine supplementation extends life span of nematodes and of ageing mice. Nature Communications, 5, 3563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zarse, K., Schmeisser, S., Groth, M., Priebe, S., Beuster, G., Kuhlow, D., Guthke, R., Platzer, M., Kahn, C. R., & Ristow, M. (2012). Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metabolism, 15(4), 451–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dancy, B. M., Sedensky, M. M., & Morgan, P. G. (2014). Effects of the mitochondrial respiratory chain on longevity in C. elegans. Experimental Gerontology, 56, 245–255.

    Article  CAS  PubMed  Google Scholar 

  42. Yee, C., Yang, W., & Hekimi, S. (2014). The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell, 157(4), 897–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hwang, A. B., Ryu, E. A., Artan, M., Chang, H. W., Kabir, M. H., Nam, H. J., Lee, D., Yang, J. S., Kim, S., Mair, W. B., Lee, C., Lee, S. S., & Lee, S. J. (2014). Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 111(42), E4458–E4467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, S. J., Hwang, A. B., & Kenyon, C. (2010). Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Current Biology, 20(23), 2131–2136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonawitz, N. D., Chatenay-Lapointe, M., Pan, Y., & Shadel, G. S. (2007). Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metabolism, 5(4), 265–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pan, Y., Schroeder, E. A., Ocampo, A., & Barrientos, A. (2011). ShadelGS. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metabolism, 13(6), 668–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schroeder, E. A., Raimundo, N., & Shadel, G. S. (2013). Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metabolism, 17(6), 954–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hekimi, S., Lapointe, J., & Wen, Y. (2011). Taking a “good” look at free radicals in the aging process. Trends in Cell Biology, 21(10), 569–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ristow, M., & Schmeisser, S. (2011). Extending life span by increasing oxidative stress. Free Radical Biology & Medicine, 51(2), 327–336.

    Article  CAS  Google Scholar 

  50. Xu, S., & Chisholm, A. D. (2014). C. elegans Epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Developmental Cell, 31(1), 48–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schieber, M., & Chandel, N. S. (2014). TOR signaling couples oxygen sensing to lifespan in C. elegans. Cell Reports, 9(1), 9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, J., Zhou, J., Cai, L., Lu, Y., Wang, T., Zhu, L., & Hu, Q. (2012). Extracellular calcium-sensing receptor is critical in hypoxic pulmonary vasoconstriction. Antioxidants & Redox Signaling, 17(3), 471–484.

    Article  CAS  Google Scholar 

  53. Zhou, J., Zhang, J., Lu, Y., Huang, S., Xiao, R., Zeng, X., Zhang, X., Li, J., Wang, T., Li, T., Zhu, L., & Hu, Q. (2016). Mitochondrial transplantation attenuates hypoxic pulmonary vasoconstriction. Oncotarget, 7(21), 31284–31298. doi:10.18632/oncotarget.8893.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Johnson, D., Allman, E., & Nehrke, K. (2012). Regulation of acid-base transporters by reactive oxygen species following mitochondrial fragmentation. American Journal of Physiology. Cell Physiology, 302(7), C1045–C1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hamanaka, R. B., Glasauer, A., Hoover, P., Yang, S., Blatt, H., Mullen, A. R., Getsios, S., Gottardi, C. J., DeBerardinis, R. J., Lavker, R. M., & Chandel, N. S. (2013). Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Science Signaling, 6(261), ra8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Tormos, K. V., Anso, E., Hamanaka, R. B., Eisenbart, J., Joseph, J., Kalyanaraman, B., & Chandel, N. S. (2011). Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metabolism, 14(4), 537–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. West, A. P., Shadel, G. S., & Ghosh, S. (2011). Mitochondria in innate immune responses. Nature Reviews. Immunology, 11(6), 389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rodriguez-Rocha, H., Garcia-Garcia, A., Pickett, C., Li, S., Jones, J., Chen, H., Webb, B., Choi, J., Zhou, Y., Zimmerman, M. C., & Franco, R. (2013). Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: Distinct roles of superoxide anion and superoxide dismutases. Free Radical Biology & Medicine, 61, 370–383.

    Article  CAS  Google Scholar 

  59. Malinouski, M., Zhou, Y., Belousov, V. V., Hatfield, D. L., & Gladyshev, V. N. (2011). Hydrogen peroxide probes directed to different cellular compartments. PloS One, 6(1), e14564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Waypa, G. B., Marks, J. D., Guzy, R., Mungai, P. T., Schriewer, J., Dokic, D., & Schumacker, P. T. (2010). Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circulation Research, 106(3), 526–535.

    Article  CAS  PubMed  Google Scholar 

  61. Cheeseman, K. H., & Slater, T. F. (1993). An introduction to free radical biochemistry. British Medical Bulletin, 49(3), 481–493.

    Article  CAS  PubMed  Google Scholar 

  62. Gross, E., Sevier, C. S., Heldman, N., Vitu, E., Bentzur, M., Kaiser, C. A., Thorpe, C., & Fass, D. (2006). Generating disulfides enzymatically: Reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bence, N. F., Sampat, R. M., & Kopito, R. R. (2001). Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 292(5521), 1552–1555.

    Article  CAS  PubMed  Google Scholar 

  64. Schaffar, G., Breuer, P., Boteva, R., Behrends, C., Tzvetkov, N., Strippel, N., Sakahira, H., Siegers, K., Hayer-Hartl, M., & Hartl, F. U. (2004). Cellular toxicity of polyglutamine expansion proteins: Mechanism of transcription factor deactivation. Molecular Cell, 15(1), 95–105.

    Article  CAS  PubMed  Google Scholar 

  65. Behrends, C., Langer, C. A., Boteva, R., Böttcher, U. M., Stemp, M. J., Schaffar, G., Rao, B. V., Giese, A., Kretzschmar, H., Siegers, K., & Hartl, F. U. (2006). ChaperoninTRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Molecular Cell, 23(6), 887–897.

    Article  CAS  PubMed  Google Scholar 

  66. Kopito, R. R. (2000). Aggresomes, inclusion bodies and protein aggregation. Trends in Cell Biology, 10(12), 524–530.

    Article  CAS  PubMed  Google Scholar 

  67. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D., & Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & Development, 13(1), 76–86.

    Article  CAS  Google Scholar 

  68. Niture, S. K., Khatri, R., & Jaiswal, A. K. (2014). Regulation of Nrf2—An update. Free Radical Biology & Medicine, 66, 36–44.

    Article  CAS  Google Scholar 

  69. Sykiotis, G. P., & Bohmann, D. (2010). Stress-activated cap’n’collar transcription factors in aging and human disease. Science Signaling, 3(112), re3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cullinan, S. B., & Diehl, J. A. (2004). PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. The Journal of Biological Chemistry, 279(19), 20108–20117.

    Article  CAS  PubMed  Google Scholar 

  71. Gorrini, C., Baniasadi, P. S., Harris, I. S., Silvester, J., Inoue, S., Snow, B., et al. (2013). BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. The Journal of Experimental Medicine, 210(8), 1529–1544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mitsuishi, Y., Taguchi, K., Kawatani, Y., Shibata, T., Nukiwa, T., Aburatani, H., Yamamoto, M., & Motohashi, H. (2012). Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell, 22(1), 66–79.

    Article  CAS  PubMed  Google Scholar 

  73. Zeeshan, H. M., Lee, G. H., Kim, H. R., & Chae, H. J. (2016). Endoplasmic reticulum stress and associated ROS. International Journal of Molecular Sciences, 17(3), 327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mbaya, E., Oulès, B., Caspersen, C., Tacine, R., Massinet, H., Pennuto, M., Chrétien, D., Munnich, A., Rötig, A., Rizzuto, R., Rutter, G. A., Paterlini-Bréchot, P., & Chami, M. (2010). Calcium signalling-dependent mitochondrial dysfunction and bioenergetics regulation in respiratory chain complex II deficiency. Cell Death and Differentiation, 17(12), 1855–1866.

    Article  CAS  PubMed  Google Scholar 

  75. Krols, M., van Isterdael, G., Asselbergh, B., Kremer, A., Lippens, S., Timmerman, V., & Janssens, S. (2016). Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathologica, 131(4), 505–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Patergnani, S., Missiroli, S., Marchi, S., & Giorgi, C. (2015). Mitochondria-associated endoplasmic reticulum membranes microenvironment: Targeting autophagic and apoptotic pathways in cancer therapy. Frontiers in Oncology, 5, 173.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shiao, Y. J., Balcerzak, B., & Vance, J. E. (1998). A mitochondrial membrane protein is required for translocation of phosphatidylserine from mitochondria-associated membranes to mitochondria. The Biochemical Journal, 331(1), 217–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stone, S. J., & Vance, J. E. (2000). Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. The Journal of Biological Chemistry, 275(44), 34534–34540.

    Article  CAS  PubMed  Google Scholar 

  79. Csordas, G., Thomas, A. P., & Hajnoczky, G. (1999). Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. The EMBO Journal, 18(1), 96–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hajnoczky, G., Csordas, G., Madesh, M., & Pacher, P. (2000). The machinery of local Ca2+signalling between sarco-endoplasmic reticulum and mitochondria. The Journal of Physiology, 529(1), 69–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gilady, S. Y., Bui, M., Lynes, E. M., Benson, M. D., Watts, R., Vance, J. E., & Simmen, T. (2010). Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress & Chaperones, 15(5), 619–629.

    Article  CAS  Google Scholar 

  82. Hu, J., Dong, L., & Outten, C. E. (2008). The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. The Journal of Biological Chemistry, 283(43), 29126–29134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kojer, K., Bien, M., Gangel, H., Morgan, B., Dick, T. P., & Riemer, J. (2012). Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. The EMBO Journal, 31(14), 3169–3182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gincel, D., Zaid, H., & Shoshan-Barmatz, V. (2001). Calcium binding and translocation by the voltage-dependent anion channel: A possible regulatory mechanism in mitochondrial function. The Biochemical Journal, 358(1), 147–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rapizzi, E., Pinton, P., Szabadkai, G., Wieckowski, M. R., Vandecasteele, G., Baird, G., Tuft, R. A., Fogarty, K. E., & Rizzuto, R. (2002). Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. The Journal of Cell Biology, 159(4), 613–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Higo, T., Hattori, M., Nakamura, T., Natsume, T., Michikawa, T., & Mikoshiba, K. (2005). Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell, 120(1), 85–98.

    Article  CAS  PubMed  Google Scholar 

  87. Anelli, T., Alessio, M., Mezghrani, A., Simmen, T., Talamo, F., Bachi, A., & Sitia, R. (2002). ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. The EMBO Journal, 21(4), 835–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Anelli, T., Bergamelli, L., Margittai, E., Rimessi, A., Fagioli, C., Malgaroli, A., Pinton, P., Ripamonti, M., Rizzuto, R., & Sitia, R. (2012). Ero1α regulates Ca2+ fluxes at the endoplasmic reticulum-mitochondria interface (MAM). Antioxidants & Redox Signaling, 16(10), 1077–1087.

    Article  CAS  Google Scholar 

  89. Fan, G., Baker, M. L., Wang, Z., Baker, M. R., Sinyagovskiy, P. A., Chiu, W., Ludtke, S. J., & Serysheva, I. I. (2015). Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature, 527(7578), 336–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rizzuto, R., Brini, M., Murgia, M., & Pozzan, T. (1993). Microdomains with high Ca2+close to IP3-sensitivechannels that are sensed by neighboring mitochondria. Science, 262(5134), 744–747.

    Article  CAS  PubMed  Google Scholar 

  91. Bkaily, G., Avedanian, L., & Jacques, D. (2009). Nuclear membrane receptors and channels as targets for drug development in cardiovascular diseases. Canadian Journal of Physiology and Pharmacology, 87(2), 108–119.

    Article  CAS  PubMed  Google Scholar 

  92. Provost, C., Choufani, F., Avedanian, L., Bkaily, G., Gobeil, F., & Jacques, D. (2010). Nitric oxide and reactive oxygen species in the nucleus revisited. Canadian Journal of Physiology and Pharmacology, 88(3), 296–304.

    Article  CAS  PubMed  Google Scholar 

  93. Ribbeck, K., & Görlich, D. (2001). Kinetic analysis of translocation through nuclear pore complexes. The EMBO Journal, 20(6), 1320–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Paine, P. L., Moore, L. C., & Horowitz, S. B. (1975). Nuclear envelope permeability. Nature, 254(5496), 109–114.

    Article  CAS  PubMed  Google Scholar 

  95. Rout, M. P., & Blobel, G. (1993). Isolation of the yeast nuclear pore complex. The Journal of Cell Biology, 123(4), 771–783.

    Article  CAS  PubMed  Google Scholar 

  96. Bkaily, G., Jaalouk, D., Jacques, D., Economos, D., Hassan, G., Simaan, M., Regoli, D., & Pothier, P. (1997). Bradykinin activates R-, T-, and L-type Ca2+ channels and induces a sustained increase of nuclear Ca2+ in aortic vascular smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 75(6), 652–660.

    Article  CAS  PubMed  Google Scholar 

  97. Bkaily, G., Nader, M., Avedanian, L., Choufani, S., Jacques, D., D’Orléans-Juste, P., Gobeil, F., Chemtob, S., & Al-Khoury, J. (2006). G-protein-coupled receptors, channels, and Na+-H+ exchanger in nuclear membranes of heart, hepatic, vascular endothelial, and smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 84(3-4), 431–441.

    Article  CAS  PubMed  Google Scholar 

  98. Savard, M., Barbaz, D., Bélanger, S., Müller-Esterl, W., Bkaily, G., D'orléans-Juste, P., Coté, J., Bovenzi, V., & Gobeil, F., Jr. (2008). Expression of endogenous nuclear bradykinin B2 receptors mediating signaling in immediate early gene activation. Journal of Cellular Physiology, 216(1), 234–244.

    Article  CAS  PubMed  Google Scholar 

  99. Pendergrass, K. D., Gwathmey, T. M., Michalek, R. D., Grayson, J. M., & Chappell, M. C. (2009). The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus. Biochemical and Biophysical Research Communications, 384(2), 149–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gwathmey, T. M., Alzayadneh, E. M., Pendergrass, K. D., & Chappell, M. C. (2012). Novel roles of nuclear angiotensin receptors and signaling mechanisms. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 302(5), R518–R530.

    Article  CAS  PubMed  Google Scholar 

  101. Seshiah, P. N., Weber, D. S., Rocic, P., Valppu, L., Taniyama, Y., & Griendling, K. K. (2002). Angiotensin II stimulation of NAD(P)H oxidase activity: Upstream mediators. Circulation Research, 91(5), 406–413.

    Article  CAS  PubMed  Google Scholar 

  102. Wilson, B. A., Gwathmey, T., Pirro, N., & Chappell, M. C. (2010). Evidence for protein kinase C-dependent stimulation of reactive oxygen species in isolated nuclei of renal epithelial cells (abstract). FASEB Journal, 24, 1059.3.

    Google Scholar 

  103. Gwathmey, T. M., Shaltout, H. A., Pendergrass, K. D., Pirro, N. T., Figueroa, J. P., Rose, J. C., Diz, D. I., & Chappell, M. C. (2009). Nuclear angiotensin II type 2 (AT2) receptors are functionally linked to nitric oxide production. American Journal of Physiology. Renal Physiology, 296(6), F1484–F1493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chiang, W. C., Chen, Y. M., Lin, S. L., Wu, K. D., & Tsai, T. J. (2007). Bradykinin enhances reactive oxygen species generation, mitochondrial injury, and cell death induced by ATP depletion—A role of the phospholipase C-Ca2+ pathway. Free Radical Biology & Medicine, 43(5), 702–710.

    Article  CAS  Google Scholar 

  105. Lee, D. K., Lança, A. J., Cheng, R., Nguyen, T., Ji, X. D., Gobeil, F., Jr., Chemtob, S., George, S. R., & O’Dowd, B. F. (2004). Agonist-independent nuclear localization of the Apelin, angiotensin AT1, and bradykinin B2 receptors. The Journal of Biological Chemistry, 279(9), 7901–7908.

    Article  CAS  PubMed  Google Scholar 

  106. Takano, M., Kanoh, A., Amako, K., Otani, M., Sano, K., Kanazawa-Hamada, M., & Matsuyama, S. (2014). Nuclear localization of bradykinin B2 receptors reflects binding to the nuclear envelope protein lamin C. European Journal of Pharmacology, 723, 507–514.

    Article  CAS  PubMed  Google Scholar 

  107. Wang, G., Sarkar, P., Peterson, J. R., Anrather, J., Pierce, J. P., Moore, J. M., Feng, J., Zhou, P., Milner, T. A., Pickel, V. M., Iadecola, C., & Davisson, R. L. (2013). COX-1-derived PGE2 and PGE2 type 1 receptors are vital for angiotensin II-induced formation of reactive oxygen species and Ca2+ influx in the subfornical organ. American Journal of Physiology. Heart and Circulatory Physiology, 305(10), H1451–H1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hilenski, L. L., Clempus, R. E., Quinn, M. T., Lambeth, J. D., & Griendling, K. K. (2004). Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(4), 677–683.

    Article  CAS  PubMed  Google Scholar 

  109. Kuroda, J., Nakagawa, K., Yamasaki, T., Nakamura, K., Takeya, R., Kuribayashi, F., Imajoh-Ohmi, S., Igarashi, K., Shibata, Y., Sueishi, K., & Sumimoto, H. (2005). The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes to Cells, 10(12), 1139–1151.

    Article  CAS  PubMed  Google Scholar 

  110. Hahn, N. E., Meischl, C., Wijnker, P. J., Musters, R. J., Fornerod, M., Janssen, H. W., Paulus, W. J., van Rossum, A. C., Niessen, H. W., & Krijnen, P. A. (2011). NOX2, p22phox and p47phox are targeted to the nuclear pore complex in ischemic cardiomyocytes colocalizing with local reactive oxygen species. Cellular Physiology and Biochemistry, 27(5), 471–478.

    Article  CAS  PubMed  Google Scholar 

  111. Ahmarani, L., Avedanian, L., Al-Khoury, J., Perreault, C., Jacques, D., & Bkaily, G. (2013). Whole-cell and nuclear NADPH oxidases levels and distribution in human endocardial endothelial, vascular smooth muscle, and vascular endothelial cells. Canadian Journal of Physiology and Pharmacology, 91(1), 71–79.

    Article  CAS  PubMed  Google Scholar 

  112. Go, Y. M., & Jones, D. P. (2010). Redox control systems in the nucleus: Mechanisms and functions. Antioxidants & Redox Signaling, 13(4), 489–509.

    Article  CAS  Google Scholar 

  113. Hainaut, P., & Milner, J. (1993). Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Research, 53(19), 4469–4473.

    CAS  PubMed  Google Scholar 

  114. Toledano, M. B., & Leonard, W. J. (1991). Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proceedings of the National Academy of Sciences of the United States of America, 88(10), 4328–4332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schoonbroodt, S., Ferreira, V., Best-Belpomme, M., Boelaert, J. R., Legrand-Poels, S., Korner, M., & Piette, J. (2000). Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of I kappa B alpha in NF-kappa B activation by an oxidative stress. Journal of Immunology, 164(8), 4292–4300.

    Article  CAS  Google Scholar 

  116. Takada, Y., Mukhopadhyay, A., Kundu, G. C., Mahabeleshwar, G. H., Singh, S., & Aggarwal, B. B. (2003). Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: Evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. The Journal of Biological Chemistry, 278(26), 24233–24241.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y., & Dong, W. (2016). ROS and ROS-mediated cellular signaling. Oxidative Medicine and Cellular Longevity, 2016, 4350965.

    PubMed  PubMed Central  Google Scholar 

  118. Hansen, J. M., Go, Y. M., & Jones, D. P. (2006). Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annual Review of Pharmacology and Toxicology, 46(1), 215–234.

    Article  CAS  PubMed  Google Scholar 

  119. Watson, W. H., & Jones, D. P. (2003). Oxidation of nuclear thioredoxin during oxidative stress. FEBS Letters, 543(1-3), 144–147.

    Article  CAS  PubMed  Google Scholar 

  120. Go, Y. M., Gipp, J. J., Mulcahy, R. T., & Jones, D. P. (2004). H2O2-dependent activation of GCLC-ARE4 reporter occurs by mitogen-activated protein kinase pathways without oxidation of cellular glutathione or thioredoxin-1. The Journal of Biological Chemistry, 279(7), 5837–5845.

    Article  CAS  PubMed  Google Scholar 

  121. Lunec, J., Holloway, K. A., Cooke, M. S., Faux, S., Griffiths, H. R., & Evans, M. D. (2002). Urinary 8-oxo-2′-deoxyguanosine: Redox regulation of DNA repair in vivo? Free Radical Biology & Medicine, 33(7), 875–885.

    Article  CAS  Google Scholar 

  122. Nakamoto, H., Kaneko, T., Tahara, S., Hayashi, E., Naito, H., Radak, Z., & Goto, S. (2007). Regular exercise reduces 8-oxodG in the nuclear and mitochondrial DNA and modulates the DNA repair activity in the liver of old rats. Experimental Gerontology, 42(4), 287–295.

    Article  CAS  PubMed  Google Scholar 

  123. Oka, S., Ohno, M., Tsuchimoto, D., Sakumi, K., Furuichi, M., & Nakabeppu, Y. (2008). Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs. The EMBO Journal, 27(2), 421–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Choudhary, S., Boldogh, I., & Brasier, A. R. (2016). Inside-out signaling pathways from nuclear reactive oxygen species control pulmonary innate immunity. Journal of Innate Immunity, 8(2), 143–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Guida, M., Maraldi, T., Beretti, F., Follo, M. Y., Manzoli, L., & De Pol, A. (2014). Nuclear Nox4-derived reactive oxygen species in myelodysplastic syndromes. BioMed Research International, 2014, 456937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Maraldi, T., Guida, M., Zavatti, M., Resca, E., Bertoni, L., La Sala, G. B., & De Pol, A. (2015). Nuclear Nox4 role in stemness power of human amniotic fluid stem cells. Oxidative Medicine and Cellular Longevity, 2015, 101304.

    PubMed  PubMed Central  Google Scholar 

  127. Markovic, J., Borras, C., Ortega, A., Sastre, J., Vina, J., & Pallardo, F. V. (2007). Glutathione is recruited into the nucleus in early phases of cell proliferation. Journal of Biological Chemistry, 282(28), 20416–20424.

    Article  CAS  PubMed  Google Scholar 

  128. Pallardo, F. V., Markovic, J., Garcia, J. L., & Vina, J. (2009). Role of nuclear glutathione as a key regulator of cell proliferation. Molecular Aspects of Medicine, 30(1-2), 77–85.

    Article  CAS  PubMed  Google Scholar 

  129. Spielberger, J. C., Moody, A. D., & Watson, W. H. (2008). Oxidationand nuclear localization of thioredoxin-1 in sparse cell cultures. Journal of Cellular Biochemistry, 104(5), 1879–1889.

    Article  CAS  PubMed  Google Scholar 

  130. Guida, M., Maraldi, T., Resca, E., Beretti, F., Zavatti, M., Bertoni, L., La Sala, G. B., & De Pol, A. (2013). Inhibition of nuclear Nox4 activity by plumbagin: Effect on proliferative capacity in human amniotic stem cells. Oxidative Medicine and Cellular Longevity, 2013, 680816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Lassegue, B., & Griendling, K. K. (2009). NADPH oxidases: Functions and pathologies in the vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(4), 653–661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Fridovich, I. (2004). Mitochondria: Are they the seat of senescence? Aging Cell, 3(1), 13–16.

    Article  CAS  PubMed  Google Scholar 

  133. Spiekermann, S., Landmesser, U., Dikalov, S., Bredt, M., Gamez, G., Tatge, H., Reepschlager, N., Hornig, B., Drexler, H., & Harrison, D. G. (2003). Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: Relation to endothelium dependent vasodilation. Circulation, 107(10), 1383–1389.

    Article  CAS  PubMed  Google Scholar 

  134. Landmesser, U., Dikalov, S., Price, S. R., McCann, L., Fukai, T., Holland, S. M., Mitch, W. E., & Harrison, D. G. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. The Journal of Clinical Investigation, 111(8), 1201–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Griendling, K. K., Sorescu, D., Lassegue, B., & Ushio-Fukai, M. (2000). Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(10), 217–2183.

    Article  Google Scholar 

  136. Griendling, K. K., Sorescu, D., & Ushio-Fukai, M. (2000). NAD(P)H oxidase: Role in cardiovascular biology and disease. Circulation Research, 86(5), 494–501.

    Article  CAS  PubMed  Google Scholar 

  137. Ohashi, M., Runge, M. S., Faraci, F. M., & Heistad, D. D. (2006). MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology Journal, 26(10), 2331–2336.

    Article  CAS  Google Scholar 

  138. Harrison, D. G., Cai, H., Landmesser, U., & Griendling, K. K. (2003). Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease. Journal of the Renin-Angiotensin-Aldosterone System, 4(2), 51–61.

    Article  CAS  PubMed  Google Scholar 

  139. Harrison, D. G., Gongora, M. C., Guzik, T. J., & Widder, J. (2007). Oxidative stress and hypertension. Journal of the American Society of Hypertension, 1(1), 30–44.

    Article  PubMed  Google Scholar 

  140. Sadek, H. A., Nulton-Persson, A. C., Szweda, P. A., & Szweda, L. I. (2003). Cardiacischemia/reperfusion, aging, andredox-dependent alterations in mitochondrial function. Archives of Biochemistry and Biophysics, 420(2), 201–208.

    Article  CAS  PubMed  Google Scholar 

  141. Brueckl, C., Kaestle, S., Kerem, A., Habazettl, H., Krombach, F., Kuppe, H., & Kuebler, W. M. (2006). Hyperoxiainduced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. American Journal of Respiratory Cell and Molecular Biology, 34(4), 453–463.

    Article  CAS  PubMed  Google Scholar 

  142. Chandel, N. S., & Budinger, G. R. (2007). The cellular basis for diverse responses to oxygen. Free Radical Biology & Medicine, 42(2), 165–174.

    Article  CAS  Google Scholar 

  143. Freeman, B. A., & Crapo, J. D. (1981). Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. The Journal of Biological Chemistry, 256(21), 10986–10992.

    CAS  PubMed  Google Scholar 

  144. Cannon, M. B., & James, R. S. (2009). Redox-sensitive green fluorescent protein: Probes for dynamic intracellular redox responses. A review. Methods in Molecular Biology, 476, 50–64.

    Article  CAS  Google Scholar 

  145. Dooley, C. T., Dore, T. M., Hanson, G. T., Jackson, W. C., Remington, S. J., & Tsien, R. Y. (2004). Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. The Journal of Biological Chemistry, 279(21), 22284–22293.

    Article  CAS  PubMed  Google Scholar 

  146. Hanson, G. T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R. A., Tsien, R. Y., & Remington, S. J. (2004). Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. The Journal of Biological Chemistry, 279(13), 13044–13053.

    Article  CAS  PubMed  Google Scholar 

  147. Jiang, K., Schwarzer, C., Lally, E., Zhang, S., Ruzin, S., Machen, T., Remington, S. J., & Feldman, L. (2006). Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiology, 141(2), 397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lohman, J. R., & Remington, S. J. (2008). Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments. Biochemistry, 47(33), 8678–8688.

    Article  CAS  PubMed  Google Scholar 

  149. Zhu, L., Zhang, J., Zhou, J., Lu, Y., Huang, S., Xiao, R., Yu, X., Zeng, X., Liu, B., Liu, F., Sun, M., Dai, M., Hao, Q., Li, J., Wang, T., Li, T., & Hu, Q. (2016). Mitochondrial transplantation attenuates hypoxic pulmonary hypertension. Oncotarget, 7(31), 48925–48940. doi:10.18632/oncotarget.10596.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Hu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhu, L., Lu, Y., Zhang, J., Hu, Q. (2017). Subcellular Redox Signaling. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_25

Download citation

Publish with us

Policies and ethics