Skip to main content

Techniques for Detecting Reactive Oxygen Species in Pulmonary Vasculature Redox Signaling

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 967))

  • 1956 Accesses

Abstract

Redox signaling plays important roles in regulating pulmonary vasculature function. Aberrant redox signaling, e.g., overproduction of reactive oxygen species (ROS) that exceeds the capability of cellular antioxidant mechanisms, has been found to alter vasculature function and remodel blood vessel structure, thus contributes to pathological processes of pulmonary vasculature. The regulation of pulmonary vasculature via ROS is a very complicated process with various biological events involved, however, the specific effect of individual ROS and the underlying mechanism still remain unclear. Most of ROS are present as free radical forms with extremely short lifetime, which makes it very difficult to detect the ROS and investigate their bioactivities. Therefore, developing specific and sensitive methods to detect ROS in complex biological system is essential for us to advance our knowledge in pulmonary vasculature regulation. In this chapter, we introduce several commonly used techniques for the detection of ROS in vitro and in vivo, including chemiluminescence-based assay, fluorescence-based assay, cytochrome c reduction method, genetically encoded fluorescent probes, as well as ESR spin trapping technique. We also discuss the advantages, limitations, and recent technical advances of each individual technique as well as their applications in pulmonary vasculature studies. We believe that technical advance in the detection of ROS will provide us with a better understanding on how to maintain normal pulmonary vasculature functions under oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Lee, M. Y., & Griendling, K. K. (2008). Redox signaling, vascular function, and hypertension. Antioxidants & Redox Signaling, 10, 1045–1059.

    Article  CAS  Google Scholar 

  2. Aggarwal, S., Gross, C. M., Sharma, S., Fineman, J. R., & Black, S. M. (2013). Reactive oxygen species in pulmonary vascular remodeling. Comprehensive Physiology, 3, 1011–1034.

    PubMed  PubMed Central  Google Scholar 

  3. Waypa, G. B., Marks, J. D., Mack, M. M., Boriboun, C., Mungai, P. T., & Schumacker, P. T. (2002). Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circulation Research, 91, 719–726.

    Article  CAS  PubMed  Google Scholar 

  4. Weissmann, N., Winterhalder, S., Nollen, M., Voswinckel, R., Quanz, K., Ghofrani, H. A., Schermuly, R. T., Seeger, W., & Grimminger, F. (2001). NO and reactive oxygen species are involved in biphasic hypoxic vasoconstriction of isolated rabbit lungs. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280, L638–L645.

    CAS  PubMed  Google Scholar 

  5. Wang, Y. X., & Zheng, Y. M. (2010). ROS-dependent signaling mechanisms for hypoxic Ca2+ responses in pulmonary artery myocytes. Antioxidants & Redox Signaling, 12, 611–623.

    Article  CAS  Google Scholar 

  6. Andrea, O., & Kenneth, W. E. (2015). Redox regulation of ion channels in the pulmonary circulation. Antioxidants & Redox Signaling, 22, 465–485.

    Article  Google Scholar 

  7. Wedgwood, S., Dettman, R. W., & Black, S. M. (2001). ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. American Journal of Physiology. Lung Cellular and Molecular Physiology, 281, L1058–L1067.

    CAS  PubMed  Google Scholar 

  8. Hartney, T., Birari, R., Venkataraman, S., Villegas, L., Martinez, M., Black, S. M., Stenmark, K. R., & Nozik-Grayck, E. (2011). Xanthine oxidase-derived ROS upregulate Egr-1 via ERK1/2 in PA smooth muscle cells; model to test impact of extracellular ROS in chronic hypoxia. PloS One, 6, e27531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chávez, M. D., Lakshmanan, N., & Kavdia, M. (2007). Impact of superoxide dismutase on nitric oxide and peroxynitrite levels in the microcirculation--a computational model. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 1022–1026.

    Google Scholar 

  10. Seta, F., Rahmani, M., Turner, P. V., & Funk, C. D. (2011). Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline. PLoS One, 6, e23439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fresquet, F., Pourageaud, F., Leblais, V., Brandes, R. P., Savineau, J. P., Marthan, R., & Muller, B. (2006). Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. British Journal of Pharmacology, 148, 714–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teng, R. J., Eis, A., Bakhutashvili, I., Arul, N., & Konduri, G. G. (2009). Increased superoxide production contributes to the impaired angiogenesis of fetal pulmonary arteries with in utero pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297, L184–L195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Redout, E. M., Wagner, M. J., Zuidwijk, M. J., Boer, C., Musters, R. J., van Hardeveld, C., Paulus, W. J., & Simonides, W. S. (2007). Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovascular Research, 75, 770–781.

    Article  CAS  PubMed  Google Scholar 

  14. Jankov, R. P., Kantores, C., Pan, J., & Belik, J. (2008). Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. American Journal of Physiology. Lung Cellular and Molecular Physiology, 294, L233–L245.

    Article  CAS  PubMed  Google Scholar 

  15. Gabrielli, L. A., Castro, P. F., Godoy, I., Mellado, R., Bourge, R. C., Alcaino, H., Chiong, M., Greig, D., Verdejo, H. E., Navarro, M., Lopez, R., Toro, B., Quiroga, C., Díaz-Araya, G., Lavandero, S., & Garcia, L. (2011). Systemic oxidative stress and endothelial dysfunction is associated with an attenuated acute vascular response to inhaled prostanoid in pulmonary artery hypertension patients. Journal of Cardiac Failure, 17, 1012–1017.

    Article  CAS  PubMed  Google Scholar 

  16. Dikalov, S., Griendling, K. K., & Harrison, D. G. (2007). Measurement of reactive oxygen species in cardiovascular studies. Hypertension, 49, 717–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dikalov, S. I., & Harrison, D. G. (2014). Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxidants & Redox Signaling, 20, 372–382.

    Article  CAS  Google Scholar 

  18. Fike, C. D., Slaughter, J. C., Kaplowitz, M. R., Zhang, Y., & Aschner, J. L. (2008). Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295, L881–L888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, J. Q., Zelko, I. N., Erbynn, E. M., Sham, J. S., & Folz, R. J. (2006). Hypoxic pulmonary hypertension: Role of superoxide and NADPH oxidase (gp91phox). American Journal of Physiology. Lung Cellular and Molecular Physiology, 290, L2–10.

    Article  CAS  PubMed  Google Scholar 

  20. Tickner, J., Fan, L. M., Du, J., Meijles, D., & Li, J. M. (2011). Nox2-derived ROS in PPARγ signaling and cell-cycle progression of lung alveolar epithelial cells. Free Radical Biology & Medicine, 51, 763–772.

    Article  CAS  Google Scholar 

  21. Kuribayashi, F., Tsuruta, S., Yamazaki, T., Nunoi, H., Imajoh-Ohmi, S., Kanegasaki, S., & Nakamura, M. (2008). Cell adhesion markedly increases lucigenin-enhanced chemiluminescence of the phagocyte NADPH oxidase. Genes to Cells, 13, 1249–1256.

    Article  CAS  PubMed  Google Scholar 

  22. Yamazaki, T., Kawai, C., Yamauchi, A., & Kuribayashi, F. (2011). A highly sensitive chemiluminescence assay for superoxide detection and chronic granulomatous disease diagnosis. Tropical Medicine and Health, 39, 41–45.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Faulkner, K., & Fridovich, I. (1993). Luminol and lucigenin as detectors for O2 •−. Free Radical Biology & Medicine, 15, 447–451.

    Article  CAS  Google Scholar 

  24. Li, Y., Zhu, H., Kuppusamy, P., Roubaud, V., Zweier, J. L., & Trush, M. A. (1998). Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. The Journal of Biological Chemistry, 273, 2015–2023.

    Article  CAS  PubMed  Google Scholar 

  25. Vladimirov, V. A., & Proskurnina, E. V. (2009). Free radicals and cell chemiluminescence. Biochemistry (Mosc), 74, 1545–1566.

    Article  CAS  Google Scholar 

  26. Fernandes, D. C., Wosniak, J., Jr., Pescatore, L. A., Bertoline, M. A., Liberman, M., Laurindo, F. R., & Santos, C. X. (2007). Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. American Journal of Physiology. Cell Physiology, 292, C413–C422.

    Article  CAS  PubMed  Google Scholar 

  27. Burnaugh, L., Sabeur, K., & Ball, B. A. (2007). Generation of superoxide anion by equine spermatozoa as detected by dihydroethidium. Theriogenology, 67, 580–589.

    Article  CAS  PubMed  Google Scholar 

  28. Hempel, S. L., Buettner, G. R., O’Malley, Y. Q., Wessels, D. A., & Flaherty, D. M. (1999). Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: Comparison with 2′,7′- dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′- dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radical Biology & Medicine, 27, 146–159.

    Article  CAS  Google Scholar 

  29. Nijmeh, J., Moldobaeva, A., & Wagner, E. M. (2010). Role of ROS in ischemia-induced lung angiogenesis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299, L535–L541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jourd’heuil, D., Jourd’heuil, F. L., Kutchukian, P. S., Musah, R. A., Wink, D. A., & Grisham, M. B. (2001). Reaction of superoxide and nitric oxide with peroxynitrite. Implications for peroxynitrite- mediated oxidation reactions in vivo. The Journal of Biological Chemistry, 276, 28799–28805.

    Article  PubMed  Google Scholar 

  31. Wardman, P. (2008). Methods to measure the reactivity of peroxynitrite-derived oxidants toward reduced fluoresceins and rhodamines. Methods in Enzymology, 441, 261–282.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, M., Diwu, Z., Panchuk-Voloshina, N., & Haugland, R. P. (1997). A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: Applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Analytical Biochemistry, 253, 162–168.

    Article  CAS  PubMed  Google Scholar 

  33. Starkov, A. A. (2010). Measurement of mitochondrial ROS production. Methods in Molecular Biology, 648, 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Votyakova, T. V., & Reynoldsa, I. J. (2004). Detection of hydrogen peroxide with Amplex Red: Interference by NADH and reduced glutathione auto-oxidation. Archives of Biochemistry and Biophysics, 431, 138–144.

    Article  CAS  PubMed  Google Scholar 

  35. Zielonka, J., & Kalyanaraman, B. (2010). Hydroethidine- and Mito-SOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radical Biology & Medicine, 48, 983–1001.

    Article  CAS  Google Scholar 

  36. Kalyanaraman, B., Darley-Usmar, V., Davies, K. J., Dennery, P. A., Forman, H. J., Grisham, M. B., Mann, G. E., Moore, K., Roberts, L. J., II, & Ischiropoulos, H. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radical Biology & Medicine, 52, 1–6.

    Article  CAS  Google Scholar 

  37. Zielonka, J., Vasquez-Vivar, J., & Kalyanaraman, B. (2008). Detection of 2-hydroxyethidium in cellular systems: A unique marker product of superoxide and hydroethidine. Nature Protocols, 3, 8–21.

    Article  CAS  PubMed  Google Scholar 

  38. Barbacanne, M. A., Souchard, J. P., Darblade, B., Iliou, J. P., Nepveu, F., Pipy, B., Bayard, F., & Arnal, J. F. (2000). Detection of superoxide anion released extracellularly by endothelial cells using cytochrome c reduction, ESR, fluorescence and lucigenin-enhanced chemiluminescence techniques. Free Radical Biology & Medicine, 29, 388–396.

    Article  CAS  Google Scholar 

  39. Landmesser, U., Dikalov, S., Price, S. R., McCann, L., Fukai, T., Holland, S. M., Mitch, W. E., & Harrison, D. G. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. The Journal of Clinical Investigation, 111, 1201–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guzik, T. J., Mussa, S., Gastaldi, D., Sadowski, J., Ratnatunga, C., Pillai, R., & Channon, K. M. (2002). Mechanisms of increased vascular superoxide production in human diabetes mellitus: Role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation, 105, 1656–1662.

    Article  CAS  PubMed  Google Scholar 

  41. Gongora, M. C., Qin, Z., Laude, K., Kim, H. W., McCann, L., Folz, J. R., Dikalov, S., Fukai, T., & Harrison, D. G. (2006). Role of extracellular superoxide dismutase in hypertension. Hypertension, 48, 473–481.

    Article  CAS  PubMed  Google Scholar 

  42. Dudley, S. C., Jr., Hoch, N. E., McCann, L. A., Honeycutt, C., Diamandopoulos, L., Fukai, T., Harrison, D. G., Dikalov, S. I., & Langberg, J. (2005). Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: Role of the NADPH and xanthine oxidases. Circulation, 112, 1266–1273.

    Article  CAS  PubMed  Google Scholar 

  43. Nozik-Grayck, E., Piantadosi, C. A., van Adelsberg, J., Alper, S. L., & Huang, Y. C. (1997). Protection of perfused lung from oxidant injury by inhibitors of anion exchange. The American Journal of Physiology, 273, L296–L304.

    CAS  PubMed  Google Scholar 

  44. Nozik-Grayck, E., Huang, Y. C. T., Carraway, M. S., & Piantadosi, C. A. (2003). Vascular signaling by free radicals bicarbonate-dependent superoxide release and pulmonary artery tone. American Journal of Physiology. Heart and Circulatory Physiology, 285, H2327–H2335.

    Article  CAS  PubMed  Google Scholar 

  45. Thomson, L., Trujillo, M., Telleri, R., & Radi, R. (1995). Kinetics of cytochrome c2+ oxidation by peroxynitrite: Implications for superoxide measurements in nitric oxide-producing biological systems. Archives of Biochemistry and Biophysics, 319, 491–497.

    Article  CAS  PubMed  Google Scholar 

  46. Belousov, V. V., Fradkov, A. F., Lukyanov, K. A., Staroverov, D. B., Shakhbazov, K. S., Terskikh, A. V., & Lukyanov, S. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Methods, 3, 281–286.

    Article  CAS  PubMed  Google Scholar 

  47. Korde, A. S., Yadav, V. R., Zheng, Y. M., & Wang, Y. X. (2011). Primary role of mitochondrial Rieske iron-sulfur protein in hypoxic ROS production in pulmonary artery myocytes. Free Radical Biology & Medicine, 50, 945–952.

    Article  CAS  Google Scholar 

  48. Waypa, G. B., Guzy, R., Mungai, P. T., Mack, M. M., Marks, J. D., Roe, M. W., & Schumacker, P. T. (2006). Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circulation Research, 99, 970–978.

    Article  CAS  PubMed  Google Scholar 

  49. Gutscher, M., Sobotta, M. C., Wabnitz, G. H., Ballikaya, S., Meyer, A. J., Samstag, Y., & Dick, T. P. (2009). Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. The Journal of Biological Chemistry, 284, 31532–31540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Waypa, G. B., Marks, J. D., Guzy, R., Mungai, P. T., Schriewer, J., Dokic, D., & Schumacker, P. T. (2010). Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circulation Research, 106, 526–535.

    Article  CAS  PubMed  Google Scholar 

  51. Weil, J. A., & Bolton, J. R. (2007). Electron paramagnetic resonance, elementary theory and practical applications (2nd ed.). Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  52. Halliwell, B., & Gutteridge, J. M. C. (1998). Free radicals in biology and medicine (3rd ed.). Oxford: Oxford University Press.

    Google Scholar 

  53. Hawkins, C. L., & Davies, M. J. (1840). Detection and characterisation of radicals in biological materials using EPR methodology. Biochimica et Biophysica Acta, General Subjects, 2014, 708–721.

    Google Scholar 

  54. Dikalov, S., Skatchkov, M., Fink, B., & Bassenge, E. (1997). Quantification of superoxide radicals and peroxynitrite in vascular cells using oxidation of sterically hindered hydroxylamines and electron spin resonance. Nitric Oxide, 1, 423–431.

    Article  CAS  PubMed  Google Scholar 

  55. Dikalov, S., Dikalova, A. E., & Mason, R. P. (2002). Noninvasive diagnostic tool for inflammation-induced oxidative stress using electron spin resonance spectroscopy and an extracellular cyclic hydroxylamine. Archives of Biochemistry and Biophysics, 402, 218–226.

    Article  CAS  PubMed  Google Scholar 

  56. Weissmann, N., Kuzkaya, N., Fuchs, B., Tiyerili, V., Schäfer, R. U., Schütte, H., Ghofrani, H. A., Schermuly, R. T., Schudt, C., Sydykov, A., Egemnazarow, B., Seeger, W., & Grimminger, F. (2005). Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy. Respiratory Research, 6, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pak, O., Sommer, N., Hoeres, T., Bakr, A., Waisbrod, S., Sydykov, A., Haag, D., Esfandiary, A., Kojonazarov, B., Veit, F., Fuchs, B., Weisel, F. C., Hecker, M., Schermuly, R. T., Grimminger, F., Ghofrani, H. A., Seeger, W., & Weissmann, N. (2013). Mitochondrial hyperpolarization in pulmonary vascular remodeling. Mitochondrial uncoupling protein deficiency as disease model. American Journal of Respiratory Cell and Molecular Biology, 249, 358–367.

    Article  Google Scholar 

  58. Janzen, E. G., & Blackburn, B. J. (1969). Detection and identification of short-lived free radicals by electron spin resonance trapping techniques (spin trapping). Photolysis of organolead, -tin, and -mercury compounds. Journal of the American Chemical Society, 91, 4481–4490.

    Article  CAS  Google Scholar 

  59. Janzen, E. G., & Gerlock, J. L. (1969). Substituent effects on the photochemistry and nitroxide radical formation of nitro aromatic compounds as studied by electron spin resonance spin-trapping techniques. Journal of the American Chemical Society, 91, 3108–3109.

    Article  CAS  Google Scholar 

  60. Janzen, E. G. (1971). Spin trapping. Accounts of Chemical Research, 4, 31–40.

    Article  CAS  Google Scholar 

  61. Lagercrantz, C. (1971). Spin trapping of some short-lived radicals by the nitroxide method. The Journal of Physical Chemistry, 75, 3466–3475.

    Article  CAS  Google Scholar 

  62. Buettner, G. R. (1987). Spin trapping: EPR parameters of spin adducts. Free Radical Biology & Medicine, 3, 259–303.

    Article  CAS  Google Scholar 

  63. Qian, S. Y., Tomer, K. B., Yue, G. H., Guo, Q., Kadiiska, M. B., & Mason, R. P. (2002). Characterization of the initial carbon-centered pentadienyl radical and subsequent radicals in lipid peroxidation: Identification via on-line high performance liquid chromatography/electron spin resonance and mass spectrometry. Free Radical Biology & Medicine, 33, 998–1009.

    Article  CAS  Google Scholar 

  64. Qian, S. Y., Yue, G. H., Tomer, K. B., & Mason, R. P. (2003). Identification of all classes of spin trapped carbon-centered radicals in soybean lipoxygenase-dependent lipid peroxidation of ω-6 polyunsaturated fatty acids via LC/ESR, LC/MS, and tandem MS. Free Radical Biology & Medicine, 34, 1017–1028.

    Article  CAS  Google Scholar 

  65. Qian, S. Y., Guo, Q., & Mason, R. P. (2003). Identification of spin trapped carbon-centered radicals in soybean lipoxygenase-dependent peroxidation of ω-3 polyunsaturated fatty acids by LC/ESR, LC/MS, and tandem MS. Free Radical Biology & Medicine, 35, 33–44.

    Article  CAS  Google Scholar 

  66. Qian, S. Y., Kadiiska, M. B., Guo, Q., & Mason, R. P. (2005). A novel protocol to identify and quantify all spin trapped free radicals from in vitro/in vivo interaction of HO and DMSO: LC/ESR, LC/MS, and dual spin trapping combinations. Free Radical Biology & Medicine, 38, 125–135.

    Article  CAS  Google Scholar 

  67. Yu, Q., Shan, Z., Ni, K., & Qian, S. Y. (2008). LC/ESR/MS study of spin trapped carbon-centered radicals formed from in vitro lipoxygenase-catalyzed peroxidation of γ-linolenic acid. Free Radical Research, 42, 442–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shan, Z., Yu, Q., Purwaha, P., Guo, B., & Qian, S. Y. (2008). A combination study of spin-trapping, LC/ESR and LC/MS on carbon-centred radicals formed from lipoxygenase-catalysed peroxidation of eicosapentaenoic acid. Free Radical Research, 43, 1–15.

    Google Scholar 

  69. Purwaha, P., Gu, Y., Kelavkar, U., Kang, J. X., Law, B., Wu, E., & Qian, S. Y. (2011). LC/ESR/MS study of pH-dependent radical generation from 15-LOX-catalyzed DPA peroxidation. Free Radical Biology & Medicine, 51, 1461–1470.

    Article  CAS  Google Scholar 

  70. Yu, Q., Purwaha, P., Ni, K., Sun, C., Mallik, S., & Qian, S. Y. (2009). Characterization of novel radicals from COX-catalyzed arachidonic acid peroxidation. Free Radical Biology & Medicine, 47, 568–576.

    Article  CAS  Google Scholar 

  71. Xiao, Y., Gu, Y., Purwaha, P., Ni, K., Law, B., Mallik, S., & Qian, S. Y. (2011). Characterization of free radicals formed from COX-catalyzed DGLA peroxidation. Free Radical Biology & Medicine, 50, 1163–1170.

    Article  CAS  Google Scholar 

  72. Sato, K., Corbett, J., Mason, R. P., & Kadiiska, M. B. (2012). In vivo evidence of free radical generation in the mouse lung after exposure to Pseudomonas aeruginosa bacterium: An ESR spin-trapping investigation. Free Radical Research, 46, 645–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sato, K., Kadiiska, M. B., Ghio, A. J., Corbett, J., Fann, Y. C., Holland, S. M., Thurman, R. G., & Mason, R. P. (2002). In vivo lipid-derived free radical formation by NADPH oxidase in acute lung injury induced by lipopolysaccharide: A model for ARDS. The FASEB Journal, 16, 1713–1720.

    Article  CAS  PubMed  Google Scholar 

  74. Arimoto, T., Kadiiska, M. B., Sato, K., Corbett, J., & Mason, R. P. (2005). Synergistic production of lung free radicals by diesel exhaust particles and endotoxin. American Journal of Respiratory and Critical Care Medicine, 171, 379–387.

    Article  PubMed  Google Scholar 

  75. Bose-Basu, B., Derose, E. F., Chen, Y. R., Mason, R. P., & London, R. E. (2001). Protein NMR spin trapping with [methyl-13C3]-MNP: Application to the tyrosyl radical of equine myoglobinm. Free Radical Biology & Medicine, 31, 383–390.

    Article  CAS  Google Scholar 

  76. Spulber, M., & Schlick, S. (2010). Using cyclodextrins to encapsulate oxygen-centered and carbon-centered radical adducts: The case of DMPO, PBN, and MNP spin traps. The Journal of Physical Chemistry A, 114, 6217–6225.

    Article  CAS  PubMed  Google Scholar 

  77. Gu, Y., Xu, Y., Law, B., & Qian, S. (2013). The first characterization of free radicals formed from cellular COX-catalyzedperoxidation. Free Radical Biology & Medicine, 57, 49–60.

    Article  CAS  Google Scholar 

  78. Xu, Y., Qi, J., Yang, X., Wu, E., & Qian, S. (2014). Free radical derivatives formed from COX-catalyzed DGLA peroxidation can attenuate colon cancer cell growth and enhance 5-FU’s cytotoxicity. Redox Biology, 2, 610–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu, Y., Yang, X., Zhao, P., Yang, Z., Yan, C., Guo, B., & Qian, S. (2016). Knockdown of delta-5-desaturase promotes the anti-cancer activity of dihomo-γ-linolenic acid and enhances the efficacy of chemotherapy in colon cancer cells expressing COX-2. Free Radical Biology & Medicine, 96, 67–77.

    Article  CAS  Google Scholar 

  80. Yang, Y., Xu, Y., Brooks, A., Guo, B., Miskimins, K., & Qian, S. (2016). Knockdown delta-5-desaturase promotes the formation of a novel free radical byproduct from COX-catalyzed ω-6 peroxidation to induce apoptosis and sensitize pancreatic cancer cells to chemotherapy drugs. Free Radical Biology & Medicine, 97, 342–350.

    Article  CAS  Google Scholar 

  81. Ramirez, D. C., Chen, Y. R., & Mason, R. P. (2003). Immunochemical detection of hemoglobin-derived radicals formed by reaction with hydrogen peroxide: Involvement of a protein-tyrosyl radical. Free Radical Biology & Medicine, 34, 830–839.

    Article  CAS  Google Scholar 

  82. Mason, R. P. (2004). Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping. Free Radical Biology & Medicine, 36, 1214–1223.

    Article  CAS  Google Scholar 

  83. Deterding, L. J., Ramirez, D. C., Dubin, J. R., Mason, R. P., & Tomer, K. B. (2004). Identification of free radicals on hemoglobin from its self-peroxidation using mass spectrometry and immunospin trapping: Observation of a histidinyl radical. The Journal of Biological Chemistry, 279, 11600–11607.

    Article  CAS  PubMed  Google Scholar 

  84. Gomez-Mejiba, S. E., Zhai, Z., Akram, H., Deterding, L. J., Hensley, K., Smith, N., Towner, R. A., Tomer, K. B., Mason, R. P., & Ramirez, D. C. (2009). Immuno-spin trapping of protein and DNA radicals: “tagging” free radicals to locate and understand the redox process. Free Radical Biology & Medicine, 46, 853–865.

    Article  CAS  Google Scholar 

  85. Chen, Y. R. (2008). EPR spin-trapping and nano LC MS/MS techniques for DEPMPO/OOH and immunospin-trapping with anti-DMPO antibody in mitochondrial electron transfer system. Methods in Molecular Biology, 477, 75–88.

    Article  CAS  PubMed  Google Scholar 

  86. Bhattacharjee, S., Deterding, L. J., Chatterjee, S., Jiang, J. J., Ehrenshaft, M., Lardinois, O., Ramirez, D. C., Tomer, K. B., & Mason, R. P. (2011). Site-specific radical formation in DNA induced by cu(II)-H2O2 oxidizing system, using ESR, immuno-spin trapping, LC-MS and MS/MS. Free Radical Biology & Medicine, 50, 1536–1545.

    Article  CAS  Google Scholar 

  87. Gomez-Mejiba, S. E., Zhai, Z., Della-Vedova, M. C., Muñoz, M. D., Chatterjee, S., Towner, R. A., Hensley, K., Floyd, R. A., Mason, R. P., & Ramirez, D. C. (1840). Immuno-spin trapping from biochemistry to medicine: Advances, challenges, and pitfalls. Focus on protein-centered radicals. Biochimica et Biophysica Acta, 2014, 722–729.

    Google Scholar 

  88. Zuo, L., Chen, Y. R., Reyes, L. A., Lee, H. L., Chen, C. L., Villamena, F. A., & Zweier, J. L. (2009). The radical trap 5,5-dimethyl-1-pyrroline N-oxide exerts dose-dependent protection against myocardial ischemia-reperfusion injury through preservation of mitochondrial electron transport. The Journal of Pharmacology and Experimental Therapeutics, 329, 515–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen, Y. R., Chen, C. L., Pfeiffer, D. R., & Zweier, J. L. (2007). Mitochondrial complex II in the post-ischemic heart. Oxidative injury and the role of protein S-glutathionylation. The Journal of Biological Chemistry, 45, 32640–32654.

    Article  Google Scholar 

  90. Ranguelova, K., Bonini, M. G., & Mason, R. P. (2010). (Bi) sulfite oxidation by copper, zinc-superoxide dismutase: Sulfite-derived, radical-initiated protein radical formation. Environmental Health Perspectives, 118, 970–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stadler, K., Bonini, M. G., Dallas, S., Jiang, J., Radi, R., Mason, R. P., & Kadiiska, M. B. (2008). Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes. Free Radical Biology & Medicine, 45, 866–874.

    Article  CAS  Google Scholar 

  92. Khoo, N. K., Cantu-Medellin, N., Devlin, J. E., St Croix, C. M., Watkins, S. C., Fleming, A. M., Champion, H. C., Mason, R. P., Freeman, B. A., & Kelley, E. E. (2012). Obesity-induced tissue free radical generation: An in vivo immuno-spin trapping study. Free Radical Biology & Medicine, 52, 2312–2319.

    Article  CAS  Google Scholar 

  93. Gomez-Mejiba, S. E., Gimenez, M. S., Zhai, Z., & Ramirez, D. C. (2010). Trapping of proteincentered radicals with a nitrone spin trap prevents endotoxin-induced experimental acute respiratory distress syndrome mouse model. Free Radical Biology & Medicine, 49, S184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Qian Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Xu, Y., Qian, S. (2017). Techniques for Detecting Reactive Oxygen Species in Pulmonary Vasculature Redox Signaling. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_23

Download citation

Publish with us

Policies and ethics