Skip to main content

Role of Transcription Factors in Pulmonary Artery Smooth Muscle Cells: An Important Link to Hypoxic Pulmonary Hypertension

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 967))

Abstract

Hypoxia, namely a lack of oxygen in the blood, induces pulmonary vasoconstriction and vasoremodeling, which serve as essential pathologic factors leading to pulmonary hypertension (PH). The underlying molecular mechanisms are uncertain; however, pulmonary artery smooth muscle cells (PASMCs) play an essential role in hypoxia-induced pulmonary vasoconstriction, vasoremodeling, and PH. Hypoxia causes oxidative damage to DNAs, proteins, and lipids. This damage (oxidative stress) modulates the activity of ion channels and elevates the intracellular calcium concentration ([Ca2+]i, Ca2+ signaling) of PASMCs. The oxidative stress and increased Ca2+ signaling mutually interact with each other, and synergistically results in a variety of cellular responses. These responses include functional and structural abnormalities of mitochondria, sarcoplasmic reticulum, and nucleus; cell contraction, proliferation, migration, and apoptosis, as well as generation of vasoactive substances, inflammatory molecules, and growth factors that mediate the development of PH. A number of studies reveal that various transcription factors (TFs) play important roles in hypoxia-induced oxidative stress, disrupted PAMSC Ca2+ signaling and the development and progress of PH. It is believed that in the pathogenesis of PH, hypoxia facilitates these roles by mediating the expression of multiple genes. Therefore, the identification of specific genes and their transcription factors implicated in PH is necessary for the complete understanding of the underlying molecular mechanisms. Moreover, this identification may aid in the development of novel and effective therapeutic strategies for PH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]i :

Intracellular calcium concentration

AP-1:

Activator protein-1

BKCa :

Ca2+-activated potassium channel

C/EBP:

CCAAT/enhancer binding protein

CaMK:

Ca2+/calmodulin-dependent protein kinase

CBP:

CREB binding protein

CCL11:

C-C motif chemokine 11

COPD:

Chronic obstructive pulmonary disease

CREB:

cAMP response element-binding protein

CS:

Cigarette smoke

CXCL:

Chemokine ligand

ET-1:

Endothelin-1

ETC:

Electron-transport chain

FOXO:

Forkhead box protein O

GATA:

Erythroid transcription factor

HDAC2:

Histone deacetylase 2

HIF-1:

Hypoxia inducible factor-1

IFN:

Interferon

IgE:

Immunoglobulin E

IKK:

IκB kinase

IL:

Interleukin

IP3R:

Inositol triphosphate receptor

IκB:

Inhibitor of NF-κB

JNK:

jun-N-terminal kinase

MEF:

Myocyte enhancer factor

NFAT:

Nuclear factor of activated T lymphocytes

NF-κB:

Nuclear factor-κB

Nox:

NADPH oxidase

NRF2:

Nuclear erythroid 2-related factor 2

PAEC:

Pulmonary artery endothelial cell

PASMC:

Pulmonary artery smooth muscle cell

PDGFR:

Platelet-derived growth factor receptor

PH:

Pulmonary hypertension

PKC:

Protein kinase C

PPAR:

Peroxisome proliferator-activated receptor

ROS:

Reactive oxygen species

RyR:

Ryanodine receptor

SOCE:

Store-operated Ca2+ entry

SOCS:

Suppressor of cytokine signaling

SR:

Sarcoplasmic reticulum

SRF:

Serum response factor

STAT:

Signal transducers and activators of transcription

TAK:

Transforming growth factor activating kinase

TBP:

TATA binding protein

TF:

Transcription factor

Th2:

T-helper type-2

TNF:

Tumor necrosis factor

Treg:

Regulatory T cells

VDCC:

Voltage-dependent Ca2+ channel

VEGF:

Vascular endothelial growth factor

References

  1. Gomberg-Maitland, M., et al. (2011). Compelling evidence of long-term outcomes in pulmonary arterial hypertension? A clinical perspective. Journal of the American College of Cardiology, 57(9), 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  2. Dorfmuller, P., et al. (2002). Chemokine RANTES in severe pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 165(4), 534–539.

    Article  PubMed  Google Scholar 

  3. Perros, F., et al. (2007). Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. The European Respiratory Journal, 29(5), 937–943.

    Article  CAS  PubMed  Google Scholar 

  4. Sanchez, O., et al. (2007). Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 176(10), 1041–1047.

    Article  CAS  PubMed  Google Scholar 

  5. Voelkel, N. F., et al. (1994). Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. American Journal of Respiratory Cell and Molecular Biology, 11(6), 664–675.

    Article  CAS  PubMed  Google Scholar 

  6. Savai, R., et al. (2012). Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 186(9), 897–908.

    Article  CAS  PubMed  Google Scholar 

  7. Kato, M., & Staub, N. C. (1966). Response of small pulmonary arteries to unilobar hypoxia and hypercapnia. Circulation Research, 19(2), 426–440.

    Article  CAS  PubMed  Google Scholar 

  8. Stenmark, K. R., Fagan, K. A., & Frid, M. G. (2006). Hypoxia-induced pulmonary vascular remodeling: Cellular and molecular mechanisms. Circulation Research, 99(7), 675–691.

    Article  CAS  PubMed  Google Scholar 

  9. Wan, F., & Lenardo, M. J. (2010). The nuclear signaling of NF-kappaB: Current knowledge, new insights, and future perspectives. Cell Research, 20(1), 24–33.

    Article  CAS  PubMed  Google Scholar 

  10. O'Shea, J. M., & Perkins, N. D. (2008). Regulation of the RelA (p65) transactivation domain. Biochemical Society Transactions, 36(Pt 4), 603–608.

    Article  PubMed  CAS  Google Scholar 

  11. Hayden, M. S., & Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell, 132(3), 344–362.

    Article  CAS  PubMed  Google Scholar 

  12. Biddlestone, J., Bandarra, D., & Rocha, S. (2015). The role of hypoxia in inflammatory disease (review). International Journal of Molecular Medicine, 35(4), 859–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poynter, M. E., Irvin, C. G., & Janssen-Heininger, Y. M. (2002). Rapid activation of nuclear factor-kappaB in airway epithelium in a murine model of allergic airway inflammation. The American Journal of Pathology, 160(4), 1325–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D'Ignazio, L., & Rocha, S. (2016). Hypoxia induced NF-kappaB. Cell, 5(1), 10.

    Article  Google Scholar 

  15. Melvin, A., Mudie, S., & Rocha, S. (2011). Further insights into the mechanism of hypoxia-induced NFkappaB. [corrected]. Cell Cycle, 10(6), 879–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Edwards, M. R., et al. (2009). Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacology & Therapeutics, 121(1), 1–13.

    Article  CAS  Google Scholar 

  17. Schuliga, M. (2015). NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules, 5(3), 1266–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wort, S. J., et al. (2009). Synergistic induction of endothelin-1 by tumor necrosis factor alpha and interferon gamma is due to enhanced NF-kappaB binding and histone acetylation at specific kappaB sites. The Journal of Biological Chemistry, 284(36), 24297–24305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kimura, S., et al. (2009). Nanoparticle-mediated delivery of nuclear factor kappaB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension, 53(5), 877–883.

    Article  CAS  PubMed  Google Scholar 

  20. Huang, J., et al. (2008). Pyrrolidine dithiocarbamate restores endothelial cell membrane integrity and attenuates monocrotaline-induced pulmonary artery hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 294(6), L1250–L1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bartlett, N. W., et al. (2012). Defining critical roles for NF-kappaB p65 and type I interferon in innate immunity to rhinovirus. EMBO Molecular Medicine, 4(12), 1244–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perkins, N. D. (2006). Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene, 25(51), 6717–6730.

    Article  CAS  PubMed  Google Scholar 

  23. Cummins, E. P., et al. (2006). Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18154–18159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cockman, M. E., et al. (2006). Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proceedings of the National Academy of Sciences of the United States of America, 103(40), 14767–14772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, S. R., et al. (2006). Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. American Journal of Physiology. Lung Cellular and Molecular Physiology, 291(1), L46–L57.

    Article  CAS  PubMed  Google Scholar 

  26. Lapperre, T. S., et al. (2006). Relation between duration of smoking cessation and bronchial inflammation in COPD. Thorax, 61(2), 115–121.

    Article  CAS  PubMed  Google Scholar 

  27. Rajendrasozhan, S., et al. (2008). Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: Epigenetics in pathogenesis of COPD. Antioxidants & Redox Signaling, 10(4), 799–811.

    Article  CAS  Google Scholar 

  28. Angel, P., & Karin, M. (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochimica et Biophysica Acta, 1072(2-3), 129–157.

    CAS  PubMed  Google Scholar 

  29. Vesely, P. W., et al. (2009). Translational regulation mechanisms of AP-1 proteins. Mutation Research, 682(1), 7–12.

    Article  CAS  PubMed  Google Scholar 

  30. Shaulian, E., & Karin, M. (2001). AP-1 in cell proliferation and survival. Oncogene, 20(19), 2390–2400.

    Article  CAS  PubMed  Google Scholar 

  31. Hazzalin, C. A., & Mahadevan, L. C. (2002). MAPK-regulated transcription: A continuously variable gene switch? Nature Reviews. Molecular Cell Biology, 3(1), 30–40.

    Article  CAS  PubMed  Google Scholar 

  32. Eferl, R., & Wagner, E. F. (2003). AP-1: A double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3(11), 859–868.

    Article  CAS  PubMed  Google Scholar 

  33. Shi, Q., et al. (2001). Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Research, 61(10), 4143–4154.

    CAS  PubMed  Google Scholar 

  34. Damert, A., Ikeda, E., & Risau, W. (1997). Activator-protein-1 binding potentiates the hypoxia-induciblefactor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells. The Biochemical Journal, 327(Pt 2), 419–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salnikow, K., et al. (2002). The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Molecular and Cellular Biology, 22(6), 1734–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Silbermann, M., et al. (1987). In vitro induction of osteosarcomalike lesion by transformation of differentiating skeletal precursor cells with FBR murine osteosarcoma virus. Calcified Tissue International, 41(4), 208–217.

    Article  CAS  PubMed  Google Scholar 

  37. Nishimura, T., & Vogt, P. K. (1988). The avian cellular homolog of the oncogene jun. Oncogene, 3(6), 659–663.

    CAS  PubMed  Google Scholar 

  38. Healy, S., Khan, P., & Davie, J. R. (2013). Immediate early response genes and cell transformation. Pharmacology & Therapeutics, 137(1), 64–77.

    Article  CAS  Google Scholar 

  39. Biasin, V., et al. (2014). Endothelin-1 driven proliferation of pulmonary arterial smooth muscle cells is c-fos dependent. The International Journal of Biochemistry & Cell Biology, 54, 137–148.

    Article  CAS  Google Scholar 

  40. Lin, H. Y., et al. (2011). Peptidoglycan induces interleukin-6 expression through the TLR2 receptor, JNK, c-Jun, and AP-1 pathways in microglia. Journal of Cellular Physiology, 226(6), 1573–1582.

    Article  CAS  PubMed  Google Scholar 

  41. Biasin, V., et al. (2014). Meprin beta, a novel mediator of vascular remodelling underlying pulmonary hypertension. The Journal of Pathology, 233(1), 7–17.

    Article  CAS  PubMed  Google Scholar 

  42. Stenmark, K. R., et al. (2009). Animal models of pulmonary arterial hypertension: The hope for etiological discovery and pharmacological cure. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297(6), L1013–L1032.

    Article  CAS  PubMed  Google Scholar 

  43. Demoly, P., et al. (1992). C-fos proto-oncogene expression in bronchial biopsies of asthmatics. American Journal of Respiratory Cell and Molecular Biology, 7(2), 128–133.

    Article  CAS  PubMed  Google Scholar 

  44. Adcock, I. M., & Lane, S. J. (2003). Corticosteroid-insensitive asthma: Molecular mechanisms. The Journal of Endocrinology, 178(3), 347–355.

    Article  CAS  PubMed  Google Scholar 

  45. Loke, T. K., et al. (2006). Systemic glucocorticoid reduces bronchial mucosal activation of activator protein 1 components in glucocorticoid-sensitive but not glucocorticoid-resistant asthmatic patients. The Journal of Allergy and Clinical Immunology, 118(2), 368–375.

    Article  CAS  PubMed  Google Scholar 

  46. Yuan, J. X., & Rubin, L. J. (2005). Pathogenesis of pulmonary arterial hypertension: The need for multiple hits. Circulation, 111(5), 534–538.

    Article  PubMed  Google Scholar 

  47. Zhang, R., et al. (2010). SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages. The Journal of Biological Chemistry, 285(10), 7097–7110.

    Article  CAS  PubMed  Google Scholar 

  48. Barnes, P. J., & Adcock, I. M. (1998). Transcription factors and asthma. The European Respiratory Journal, 12(1), 221–234.

    Article  CAS  PubMed  Google Scholar 

  49. Manning, A. M., & Davis, R. J. (2003). Targeting JNK for therapeutic benefit: from junk to gold? Nature reviews. Drug Discovery, 2(7), 554–565.

    Article  CAS  PubMed  Google Scholar 

  50. Nath, P., et al. (2005). Potential role of c-Jun NH2-terminal kinase in allergic airway inflammation and remodelling: Effects of SP600125. European Journal of Pharmacology, 506(3), 273–283.

    Article  CAS  PubMed  Google Scholar 

  51. Goenka, S., & Kaplan, M. H. (2011). Transcriptional regulation by STAT6. Immunologic Research, 50(1), 87–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuperman, D. A., & Schleimer, R. P. (2008). Interleukin-4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Current Molecular Medicine, 8(5), 384–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nelms, K., et al. (1999). The IL-4 receptor: Signaling mechanisms and biologic functions. Annual Review of Immunology, 17, 701–738.

    Article  CAS  PubMed  Google Scholar 

  54. Mueller, T. D., et al. (2002). Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochimica et Biophysica Acta, 1592(3), 237–250.

    Article  CAS  PubMed  Google Scholar 

  55. Hershey, G. K. (2003). IL-13 receptors and signaling pathways: An evolving web. The Journal of Allergy and Clinical Immunology, 111(4), 677–690. quiz 691.

    Article  CAS  PubMed  Google Scholar 

  56. Zimmermann, N., et al. (2003). Chemokines in asthma: Cooperative interaction between chemokines and IL-13. The Journal of Allergy and Clinical Immunology, 111(2), 227–242. quiz 243.

    Article  CAS  PubMed  Google Scholar 

  57. Wurster, A. L., Tanaka, T., & Grusby, M. J. (2000). The biology of Stat4 and Stat6. Oncogene, 19(21), 2577–2584.

    Article  CAS  PubMed  Google Scholar 

  58. Mullings, R. E., et al. (2001). Signal transducer and activator of transcription 6 (STAT-6) expression and function in asthmatic bronchial epithelium. The Journal of Allergy and Clinical Immunology, 108(5), 832–838.

    Article  CAS  PubMed  Google Scholar 

  59. Chapoval, S. P., et al. (2011). STAT6 expression in multiple cell types mediates the cooperative development of allergic airway disease. Journal of Immunology, 186(4), 2571–2583.

    Article  CAS  Google Scholar 

  60. Tomkinson, A., et al. (1999). The failure of STAT6-deficient mice to develop airway eosinophilia and airway hyperresponsiveness is overcome by interleukin-5. American Journal of Respiratory and Critical Care Medicine, 160(4), 1283–1291.

    Article  CAS  PubMed  Google Scholar 

  61. Sehra, S., et al. (2008). IL-4 is a critical determinant in the generation of allergic inflammation initiated by a constitutively active Stat6. Journal of Immunology, 180(5), 3551–3559.

    Article  CAS  Google Scholar 

  62. Nakao, I., et al. (2008). Identification of pendrin as a common mediator for mucus production in bronchial asthma and chronic obstructive pulmonary disease. Journal of Immunology, 180(9), 6262–6269.

    Article  CAS  Google Scholar 

  63. Nofziger, C., et al. (2011). STAT6 links IL-4/IL-13 stimulation with pendrin expression in asthma and chronic obstructive pulmonary disease. Clinical Pharmacology and Therapeutics, 90(3), 399–405.

    Article  CAS  PubMed  Google Scholar 

  64. Hoshino, M., et al. (2002). Increased expression of the human Ca2+−activated cl- channel 1 (CaCC1) gene in the asthmatic airway. American Journal of Respiratory and Critical Care Medicine, 165(8), 1132–1136.

    Article  PubMed  Google Scholar 

  65. Thai, P., et al. (2005). Differential regulation of MUC5AC/Muc5ac and hCLCA-1/mGob-5 expression in airway epithelium. American Journal of Respiratory Cell and Molecular Biology, 33(6), 523–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Inoue, H., et al. (2007). Role of endogenous inhibitors of cytokine signaling in allergic asthma. Current Medicinal Chemistry, 14(2), 181–189.

    Article  CAS  PubMed  Google Scholar 

  67. Knosp, C. A., et al. (2011). SOCS2 regulates T helper type 2 differentiation and the generation of type 2 allergic responses. The Journal of Experimental Medicine, 208(7), 1523–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fulkerson, P. C., et al. (2004). Pulmonary chemokine expression is coordinately regulated by STAT1, STAT6, and IFN-gamma. Journal of Immunology, 173(12), 7565–7574.

    Article  CAS  Google Scholar 

  69. Tomita, K., et al. (2012). STAT6 expression in T cells, alveolar macrophages and bronchial biopsies of normal and asthmatic subjects. Journal of Inflammation, 9, 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Beghe, B., et al. (2010). Polymorphisms in IL13 pathway genes in asthma and chronic obstructive pulmonary disease. Allergy, 65(4), 474–481.

    Article  CAS  PubMed  Google Scholar 

  71. Kavalar, M. S., et al. (2012). Association of ORMDL3, STAT6 and TBXA2R gene polymorphisms with asthma. International Journal of Immunogenetics, 39(1), 20–25.

    Article  CAS  PubMed  Google Scholar 

  72. Gao, F., et al. (2012). Genistein attenuated allergic airway inflammation by modulating the transcription factors T-bet, GATA-3 and STAT-6 in a murine model of asthma. Pharmacology, 89(3-4), 229–236.

    Article  CAS  PubMed  Google Scholar 

  73. Matsukura, S., et al. (1999). Activation of eotaxin gene transcription by NF-kappa B and STAT6 in human airway epithelial cells. Journal of Immunology, 163(12), 6876–6883.

    CAS  Google Scholar 

  74. Liu, Y. S., et al. (2012). Chemoattraction of macrophages by secretory molecules derived from cells expressing the signal peptide of eosinophil cationic protein. BMC Systems Biology, 6, 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Homma, T., et al. (2010). Cooperative activation of CCL5 expression by TLR3 and tumor necrosis factor-alpha or interferon-gamma through nuclear factor-kappaB or STAT-1 in airway epithelial cells. International Archives of Allergy and Immunology, 152(Suppl 1), 9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chiba, Y., Todoroki, M., & Misawa, M. (2009). Activation of signal transducer and activator of transcription factor 1 by interleukins-13 and -4 in cultured human bronchial smooth muscle cells. Journal of Smooth Muscle Research, 45(6), 279–288.

    Article  PubMed  Google Scholar 

  77. Wang, I. M., et al. (2004). STAT-1 is activated by IL-4 and IL-13 in multiple cell types. Molecular Immunology, 41(9), 873–884.

    Article  CAS  PubMed  Google Scholar 

  78. Wohlmann, A., et al. (2010). Signal transduction by the atopy-associated human thymic stromal lymphopoietin (TSLP) receptor depends on Janus kinase function. Biological Chemistry, 391(2-3), 181–186.

    CAS  PubMed  Google Scholar 

  79. Hashimoto, K., et al. (2005). Respiratory syncytial virus infection in the absence of STAT 1 results in airway dysfunction, airway mucus, and augmented IL-17 levels. The Journal of Allergy and Clinical Immunology, 116(3), 550–557.

    Article  CAS  PubMed  Google Scholar 

  80. Strengell, M., et al. (2003). IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. Journal of Immunology, 170(11), 5464–5469.

    Article  CAS  Google Scholar 

  81. Harada, M., et al. (2007). Functional polymorphism in the suppressor of cytokine signaling 1 gene associated with adult asthma. American Journal of Respiratory Cell and Molecular Biology, 36(4), 491–496.

    Article  CAS  PubMed  Google Scholar 

  82. Chiba, Y., Todoroki, M., & Misawa, M. (2011). Antigen exposure causes activations of signal transducer and activator of transcription 6 (STAT6) and STAT1, but not STAT3, in lungs of sensitized mice. Immunopharmacology and Immunotoxicology, 33(1), 43–48.

    Article  CAS  PubMed  Google Scholar 

  83. Diez, D., et al. (2012). Network analysis identifies a putative role for the PPAR and type 1 interferon pathways in glucocorticoid actions in asthmatics. BMC Medical Genomics, 5, 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sampath, D., et al. (1999). Constitutive activation of an epithelial signal transducer and activator of transcription (STAT) pathway in asthma. The Journal of Clinical Investigation, 103(9), 1353–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oda, A., Wakao, H., & Fujita, H. (2002). Calpain is a signal transducer and activator of transcription (STAT) 3 and STAT5 protease. Blood, 99(5), 1850–1852.

    Article  CAS  PubMed  Google Scholar 

  86. Glading, A., Lauffenburger, D. A., & Wells, A. (2002). Cutting to the chase: Calpain proteases in cell motility. Trends in Cell Biology, 12(1), 46–54.

    Article  CAS  PubMed  Google Scholar 

  87. Constant, S., et al. (1995). Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. The Journal of Experimental Medicine, 182(5), 1591–1596.

    Article  CAS  PubMed  Google Scholar 

  88. Kagami, S., et al. (2001). Stat5a regulates T helper cell differentiation by several distinct mechanisms. Blood, 97(8), 2358–2365.

    Article  CAS  PubMed  Google Scholar 

  89. Kim, K. A., et al. (2014). Degradation of the transcription factors NF-kappaB, STAT3, and STAT5 is involved in Entamoeba Histolytica-induced cell death in Caco-2 colonic epithelial cells. The Korean Journal of Parasitology, 52(5), 459–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhu, Y., Wang, W., & Wang, X. (2015). Roles of transcriptional factor 7 in production of inflammatory factors for lung diseases. Journal of Translational Medicine, 13, 273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hurlstone, A., & Clevers, H. (2002). T-cell factors: Turn-ons and turn-offs. The EMBO Journal, 21(10), 2303–2311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Willinger, T., et al. (2006). Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. Journal of Immunology, 176(3), 1439–1446.

    Article  CAS  Google Scholar 

  93. Eastman, Q., & Grosschedl, R. (1999). Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Current Opinion in Cell Biology, 11(2), 233–240.

    Article  CAS  PubMed  Google Scholar 

  94. Ress, A., & Moelling, K. (2006). Bcr interferes with beta-catenin-Tcf1 interaction. FEBS Letters, 580(5), 1227–1230.

    Article  CAS  PubMed  Google Scholar 

  95. Ress, A., & Moelling, K. (2005). Bcr is a negative regulator of the Wnt signalling pathway. EMBO Reports, 6(11), 1095–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ober, C. (2001). Susceptibility genes in asthma and allergy. Current Allergy and Asthma Reports, 1(2), 174–179.

    Article  CAS  PubMed  Google Scholar 

  97. Yang, Q., et al. (2013). T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity, 38(4), 694–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yu, Q., et al. (2009). T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. Nature Immunology, 10(9), 992–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Scanlon, S. T., & McKenzie, A. N. (2012). Type 2 innate lymphoid cells: New players in asthma and allergy. Current Opinion in Immunology, 24(6), 707–712.

    Article  CAS  PubMed  Google Scholar 

  100. Minai, O. A., Benditt, J., & Martinez, F. J. (2008). Natural history of emphysema. Proceedings of the American Thoracic Society, 5(4), 468–474.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kneidinger, N., et al. (2011). Activation of the WNT/beta-catenin pathway attenuates experimental emphysema. American Journal of Respiratory and Critical Care Medicine, 183(6), 723–733.

    Article  CAS  PubMed  Google Scholar 

  102. Godtfredsen, N. S., et al. (2008). COPD-related morbidity and mortality after smoking cessation: Status of the evidence. The European Respiratory Journal, 32(4), 844–853.

    Article  CAS  PubMed  Google Scholar 

  103. Kensler, T. W., Wakabayashi, N., & Biswal, S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annual Review of Pharmacology and Toxicology, 47, 89–116.

    Article  CAS  PubMed  Google Scholar 

  104. Malhotra, D., et al. (2008). Expression of concern: Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. American Journal of Respiratory and Critical Care Medicine, 178(6), 592–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Suzuki, M., et al. (2008). Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. American Journal of Respiratory Cell and Molecular Biology, 39(6), 673–682.

    Article  CAS  PubMed  Google Scholar 

  106. Goven, D., et al. (2008). Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax, 63(10), 916–924.

    Article  CAS  PubMed  Google Scholar 

  107. Kaspar, J. W., Niture, S. K., & Jaiswal, A. K. (2009). Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biology & Medicine, 47(9), 1304–1309.

    Article  CAS  Google Scholar 

  108. Sykiotis, G. P., & Bohmann, D. (2010). Stress-activated cap'n'collar transcription factors in aging and human disease. Science Signaling, 3(112), re3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Itoh, K., Mimura, J., & Yamamoto, M. (2010). Discovery of the negative regulator of Nrf2, Keap1: A historical overview. Antioxidants & Redox Signaling, 13(11), 1665–1678.

    Article  CAS  Google Scholar 

  110. Clements, C. M., et al. (2006). DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 15091–15096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Niture, S. K., et al. (2010). Nrf2 signaling and cell survival. Toxicology and Applied Pharmacology, 244(1), 37–42.

    Article  CAS  PubMed  Google Scholar 

  112. Adair-Kirk, T. L., et al. (2008). Distal airways in mice exposed to cigarette smoke: Nrf2-regulated genes are increased in Clara cells. American Journal of Respiratory Cell and Molecular Biology, 39(4), 400–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Iizuka, T., et al. (2005). Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes to Cells, 10(12), 1113–1125.

    Article  CAS  PubMed  Google Scholar 

  114. Ishii, Y., et al. (2005). Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. Journal of Immunology, 175(10), 6968–6975.

    Article  CAS  Google Scholar 

  115. Yoshida, T., & Tuder, R. M. (2007). Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiological Reviews, 87(3), 1047–1082.

    Article  CAS  PubMed  Google Scholar 

  116. Malhotra, D., et al. (2011). Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. The Journal of Clinical Investigation, 121(11), 4289–4302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barnes, P. J. (2012). New drugs for asthma. Seminars in Respiratory and Critical Care Medicine, 33(6), 685–694.

    Article  PubMed  Google Scholar 

  118. Boutten, A., et al. (2011). NRF2 targeting: A promising therapeutic strategy in chronic obstructive pulmonary disease. Trends in Molecular Medicine, 17(7), 363–371.

    Article  CAS  PubMed  Google Scholar 

  119. Sandford, A. J., et al. (2012). NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease. Physiological Genomics, 44(15), 754–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lau, A., et al. (2013). The predicted molecular weight of Nrf2: It is what it is not. Antioxidants & Redox Signaling, 18(1), 91–93.

    Article  CAS  Google Scholar 

  121. Semenza, G. L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annual Review of Cell and Developmental Biology, 15, 551–578.

    Article  CAS  PubMed  Google Scholar 

  122. Huang, L. E., et al. (2002). Leu-574 of HIF-1alpha is essential for the von Hippel-Lindau (VHL)-mediated degradation pathway. The Journal of Biological Chemistry, 277(44), 41750–41755.

    Article  CAS  PubMed  Google Scholar 

  123. Kageyama, Y., et al. (2004). Leu-574 of human HIF-1alpha is a molecular determinant of prolyl hydroxylation. The FASEB Journal, 18(9), 1028–1030.

    CAS  PubMed  Google Scholar 

  124. Kallio, P. J., et al. (1998). Signal transduction in hypoxic cells: Inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. The EMBO Journal, 17(22), 6573–6586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pugh, C. W., et al. (1997). Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. The Journal of Biological Chemistry, 272(17), 11205–11214.

    Article  CAS  PubMed  Google Scholar 

  126. Yu, A. Y., et al. (1998). Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. The American Journal of Physiology, 275(4 Pt 1), L818–L826.

    CAS  PubMed  Google Scholar 

  127. Iyer, N. V., et al. (1998). Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes & Development, 12(2), 149–162.

    Article  CAS  Google Scholar 

  128. Kotch, L. E., et al. (1999). Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Developmental Biology, 209(2), 254–267.

    Article  CAS  PubMed  Google Scholar 

  129. Ryan, H. E., Lo, J., & Johnson, R. S. (1998). HIF-1 alpha is required for solid tumor formation and embryonic vascularization. The EMBO Journal, 17(11), 3005–3015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yu, A. Y., et al. (1999). Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. The Journal of Clinical Investigation, 103(5), 691–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Stenmark, K. R., & Mecham, R. P. (1997). Cellular and molecular mechanisms of pulmonary vascular remodeling. Annual Review of Physiology, 59, 89–144.

    Article  CAS  PubMed  Google Scholar 

  132. Li, H., et al. (1994). Enhanced endothelin-1 and endothelin receptor gene expression in chronic hypoxia. Journal of Applied Physiology, 77(3), 1451–1459.

    CAS  PubMed  Google Scholar 

  133. DiCarlo, V. S., et al. (1995). ETA-receptor antagonist prevents and reverses chronic hypoxia-induced pulmonary hypertension in rat. The American Journal of Physiology, 269(5 Pt 1), L690–L697.

    CAS  PubMed  Google Scholar 

  134. Hu, J., et al. (1998). Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand. Biochemical and Biophysical Research Communications, 245(3), 894–899.

    Article  CAS  PubMed  Google Scholar 

  135. Shimoda, L. A., Sylvester, J. T., & Sham, J. S. (2000). Mobilization of intracellular Ca(2+) by endothelin-1 in rat intrapulmonary arterial smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278(1), L157–L164.

    CAS  PubMed  Google Scholar 

  136. Wedgwood, S., Dettman, R. W., & Black, S. M. (2001). ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. American Journal of Physiology. Lung Cellular and Molecular Physiology, 281(5), L1058–L1067.

    CAS  PubMed  Google Scholar 

  137. Kawanabe, Y., Hashimoto, N., & Masaki, T. (2002). Extracellular Ca2+ influx and endothelin-1-induced intracellular mitogenic cascades in rabbit internal carotid artery vascular smooth muscle cells. Journal of Cardiovascular Pharmacology, 40(2), 307–314.

    Article  CAS  PubMed  Google Scholar 

  138. Kyaw, M., et al. (2002). Antioxidants inhibit endothelin-1 (1-31)-induced proliferation of vascular smooth muscle cells via the inhibition of mitogen-activated protein (MAP) kinase and activator protein-1 (AP-1). Biochemical Pharmacology, 64(10), 1521–1531.

    Article  CAS  PubMed  Google Scholar 

  139. Pisarcik, S., et al. (2013). Activation of hypoxia-inducible factor-1 in pulmonary arterial smooth muscle cells by endothelin-1. American Journal of Physiology. Lung Cellular and Molecular Physiology, 304(8), L549–L561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Morrell, N. W., et al. (1995). Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. The Journal of Clinical Investigation, 96(4), 1823–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Morrell, N. W., Morris, K. G., & Stenmark, K. R. (1995). Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. The American Journal of Physiology, 269(4 Pt 2), H1186–H1194.

    CAS  PubMed  Google Scholar 

  142. Richard, D. E., Berra, E., & Pouyssegur, J. (2000). Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. The Journal of Biological Chemistry, 275(35), 26765–26771.

    CAS  PubMed  Google Scholar 

  143. Kim, I. M., et al. (2006). The Forkhead box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Research, 66(4), 2153–2161.

    Article  CAS  PubMed  Google Scholar 

  144. Park, H. J., et al. (2009). FoxM1, a critical regulator of oxidative stress during oncogenesis. The EMBO Journal, 28(19), 2908–2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wu, Q. F., et al. (2010). Knockdown of FoxM1 by siRNA interference decreases cell proliferation, induces cell cycle arrest and inhibits cell invasion in MHCC-97H cells in vitro. Acta Pharmacologica Sinica, 31(3), 361–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, I. C., et al. (2008). FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. The Journal of Biological Chemistry, 283(30), 20770–20778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Xia, L. M., et al. (2009). Transcriptional up-regulation of FoxM1 in response to hypoxia is mediated by HIF-1. Journal of Cellular Biochemistry, 106(2), 247–256.

    Article  CAS  PubMed  Google Scholar 

  148. Kalin, T. V., et al. (2008). Forkhead box m1 transcription factor is required for perinatal lung function. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19330–19335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kim, I. M., et al. (2005). The forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature. The Journal of Biological Chemistry, 280(23), 22278–22286.

    Article  CAS  PubMed  Google Scholar 

  150. Ustiyan, V., et al. (2009). Forkhead box M1 transcriptional factor is required for smooth muscle cells during embryonic development of blood vessels and esophagus. Developmental Biology, 336(2), 266–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhao, Y. Y., et al. (2006). Endothelial cell-restricted disruption of FoxM1 impairs endothelial repair following LPS-induced vascular injury. The Journal of Clinical Investigation, 116(9), 2333–2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kalinichenko, V. V., et al. (2003). Ubiquitous expression of the forkhead box M1B transgene accelerates proliferation of distinct pulmonary cell types following lung injury. The Journal of Biological Chemistry, 278(39), 37888–37894.

    Article  CAS  PubMed  Google Scholar 

  153. Hosaka, T., et al. (2004). Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2975–2980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tran, H., et al. (2003). The many forks in FOXO's road. Science's STKE: Signal Transduction Knowledge Environment, 2003(172), RE5.

    PubMed  Google Scholar 

  155. Savai, R., et al. (2014). Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nature Medicine, 20(11), 1289–1300.

    Article  CAS  PubMed  Google Scholar 

  156. Brennan, L. A., et al. (2003). Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: A role for NADPH oxidase. Circulation Research, 92(6), 683–691.

    Article  CAS  PubMed  Google Scholar 

  157. Jernigan, N. L., Resta, T. C., & Walker, B. R. (2004). Contribution of oxygen radicals to altered NO-dependent pulmonary vasodilation in acute and chronic hypoxia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(5), L947–L955.

    Article  CAS  PubMed  Google Scholar 

  158. Killilea, D. W., et al. (2000). Free radical production in hypoxic pulmonary artery smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 279(2), L408–L412.

    CAS  PubMed  Google Scholar 

  159. Liu, J. Q., et al. (2003). Hypoxic constriction and reactive oxygen species in porcine distal pulmonary arteries. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285(2), L322–L333.

    Article  CAS  PubMed  Google Scholar 

  160. Marshall, C., et al. (1996). Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. American Journal of Respiratory Cell and Molecular Biology, 15(5), 633–644.

    Article  CAS  PubMed  Google Scholar 

  161. Paddenberg, R., et al. (2003). Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. American Journal of Physiology. Lung Cellular and Molecular Physiology, 284(5), L710–L719.

    Article  CAS  PubMed  Google Scholar 

  162. Rathore, R., et al. (2006). Mitochondrial ROS-PKCepsilon signaling axis is uniquely involved in hypoxic increase in [Ca2+]i in pulmonary artery smooth muscle cells. Biochemical and Biophysical Research Communications, 351(3), 784–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rathore, R., et al. (2008). Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radical Biology & Medicine, 45(9), 1223–1231.

    Article  CAS  Google Scholar 

  164. Wang, Q. S., et al. (2007). Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes. Free Radical Biology & Medicine, 42(5), 642–653.

    Article  CAS  Google Scholar 

  165. Wang, X., et al. (2006). Hypoxia-induced reactive oxygen species downregulate ETB receptor-mediated contraction of rat pulmonary arteries. American Journal of Physiology. Lung Cellular and Molecular Physiology, 290(3), L570–L578.

    Article  CAS  PubMed  Google Scholar 

  166. Waypa, G. B., Chandel, N. S., & Schumacker, P. T. (2001). Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circulation Research, 88(12), 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  167. Waypa, G. B., et al. (2006). Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circulation Research, 99(9), 970–978.

    Article  CAS  PubMed  Google Scholar 

  168. Archer, S. L., et al. (1993). A redox-based O2 sensor in rat pulmonary vasculature. Circulation Research, 73(6), 1100–1112.

    Article  CAS  PubMed  Google Scholar 

  169. Leach, R. M., et al. (2001). Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: Identity of the hypoxic sensor. The Journal of Physiology, 536(Pt 1), 211–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Michelakis, E. D., et al. (2002). Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circulation Research, 90(12), 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  171. Waypa, G. B., et al. (2002). Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circulation Research, 91(8), 719–726.

    Article  CAS  PubMed  Google Scholar 

  172. Weissmann, N., et al. (2003). Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs. American Journal of Respiratory Cell and Molecular Biology, 29(6), 721–732.

    Article  CAS  PubMed  Google Scholar 

  173. Firth, A. L., Yuill, K. H., & Smirnov, S. V. (2008). Mitochondria-dependent regulation of Kv currents in rat pulmonary artery smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295(1), L61–L70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lin, M. J., et al. (2007). Hydrogen peroxide-induced Ca2+ mobilization in pulmonary arterial smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292(6), L1598–L1608.

    Article  CAS  PubMed  Google Scholar 

  175. Pourmahram, G. E., et al. (2008). Constriction of pulmonary artery by peroxide: Role of Ca2+ release and PKC. Free Radical Biology & Medicine, 45(10), 1468–1476.

    Article  CAS  Google Scholar 

  176. Robertson, T. P., Aaronson, P. I., & Ward, J. P. (1995). Hypoxic vasoconstriction and intracellular Ca2+ in pulmonary arteries: Evidence for PKC-independent Ca2+ sensitization. The American Journal of Physiology, 268(1 Pt 2), H301–H307.

    CAS  PubMed  Google Scholar 

  177. Robertson, T. P., et al. (2000). Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. The Journal of Physiology, 525(Pt 3), 669–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Li, X. Q., et al. (2009). Genetic evidence for functional role of ryanodine receptor 1 in pulmonary artery smooth muscle cells. Pflugers Archiv : European Journal of Physiology, 457(4), 771–783.

    Article  CAS  PubMed  Google Scholar 

  179. Zheng, Y. M., et al. (2005). Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. The Journal of General Physiology, 125(4), 427–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Vadula, M. S., Kleinman, J. G., & Madden, J. A. (1993). Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. The American Journal of Physiology, 265(6 Pt 1), L591–L597.

    CAS  PubMed  Google Scholar 

  181. Wang, Y. X., et al. (2003). Metabolic inhibition with cyanide induces calcium release in pulmonary artery myocytes and Xenopus oocytes. American Journal of Physiology. Cell Physiology, 284(2), C378–C388.

    Article  CAS  PubMed  Google Scholar 

  182. Lee, S. L., Wang, W. W., & Fanburg, B. L. (1998). Superoxide as an intermediate signal for serotonin-induced mitogenesis. Free Radical Biology & Medicine, 24(5), 855–858.

    Article  Google Scholar 

  183. Suzuki, Y. J., et al. (2003). Activation of GATA-4 by serotonin in pulmonary artery smooth muscle cells. The Journal of Biological Chemistry, 278(19), 17525–17531.

    Article  CAS  PubMed  Google Scholar 

  184. Liu, Y., et al. (2004). Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circulation Research, 95(6), 579–586.

    Article  CAS  PubMed  Google Scholar 

  185. Lawrie, A., et al. (2005). Interdependent serotonin transporter and receptor pathways regulate S100A4/Mts1, a gene associated with pulmonary vascular disease. Circulation Research, 97(3), 227–235.

    Article  CAS  PubMed  Google Scholar 

  186. Bito, H., Deisseroth, K., & Tsien, R. W. (1997). Ca2+−dependent regulation in neuronal gene expression. Current Opinion in Neurobiology, 7(3), 419–429.

    Article  CAS  PubMed  Google Scholar 

  187. Cartin, L., Lounsbury, K. M., & Nelson, M. T. (2000). Coupling of Ca(2+) to CREB activation and gene expression in intact cerebral arteries from mouse : Roles of ryanodine receptors and voltage-dependent Ca(2+) channels. Circulation Research, 86(7), 760–767.

    Article  CAS  PubMed  Google Scholar 

  188. Garcin, I., & Tordjmann, T. (2012). Calcium signalling and liver regeneration. International Journal of Hepatology, 2012, 630670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Martianov, I., et al. (2010). Cell-specific occupancy of an extended repertoire of CREM and CREB binding loci in male germ cells. BMC Genomics, 11, 530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Sassone-Corsi, P. (1995). Transcription factors responsive to cAMP. Annual Review of Cell and Developmental Biology, 11, 355–377.

    Article  CAS  PubMed  Google Scholar 

  191. Sun, P., et al. (1994). Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes & Development, 8(21), 2527–2539.

    Article  CAS  Google Scholar 

  192. Pulver, R. A., et al. (2004). Store-operated Ca2+ entry activates the CREB transcription factor in vascular smooth muscle. Circulation Research, 94(10), 1351–1358.

    Article  CAS  PubMed  Google Scholar 

  193. Takahashi, Y., et al. (2007). Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 361(4), 934–940.

    Article  CAS  PubMed  Google Scholar 

  194. Barlow, C. A., et al. (2006). Excitation-transcription coupling in smooth muscle. The Journal of Physiology, 570(Pt 1), 59–64.

    Article  CAS  PubMed  Google Scholar 

  195. Wellman, G. C., & Nelson, M. T. (2003). Signaling between SR and plasmalemma in smooth muscle: Sparks and the activation of Ca2+−sensitive ion channels. Cell Calcium, 34(3), 211–229.

    Article  CAS  PubMed  Google Scholar 

  196. Hill-Eubanks, D. C., et al. (2003). NFAT regulation in smooth muscle. Trends in Cardiovascular Medicine, 13(2), 56–62.

    Article  CAS  PubMed  Google Scholar 

  197. Gomez, M. F., et al. (2002). Opposing actions of inositol 1,4,5-trisphosphate and ryanodine receptors on nuclear factor of activated T-cells regulation in smooth muscle. The Journal of Biological Chemistry, 277(40), 37756–37764.

    Article  CAS  PubMed  Google Scholar 

  198. Stevenson, A. S., et al. (2001). NFAT4 movement in native smooth muscle. A role for differential Ca(2+) signaling. The Journal of Biological Chemistry, 276(18), 15018–15024.

    Article  CAS  PubMed  Google Scholar 

  199. Bierer, R., et al. (2011). NFATc3 is required for chronic hypoxia-induced pulmonary hypertension in adult and neonatal mice. American Journal of Physiology. Lung Cellular and Molecular Physiology, 301(6), L872–L880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hou, X., et al. (2013). Silencing of STIM1 attenuates hypoxia-induced PASMCs proliferation via inhibition of the SOC/Ca2+/NFAT pathway. Respiratory Research, 14, 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. de Frutos, S., et al. (2007). NFATc3 mediates chronic hypoxia-induced pulmonary arterial remodeling with alpha-actin up-regulation. The Journal of Biological Chemistry, 282(20), 15081–15089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Amberg, G. C., et al. (2004). NFATc3 regulates Kv2.1 expression in arterial smooth muscle. The Journal of Biological Chemistry, 279(45), 47326–47334.

    Article  CAS  PubMed  Google Scholar 

  203. Gonzalez Bosc, L. V., et al. (2005). Nuclear factor of activated T cells and serum response factor cooperatively regulate the activity of an alpha-actin intronic enhancer. The Journal of Biological Chemistry, 280(28), 26113–26120.

    Article  PubMed  CAS  Google Scholar 

  204. Layne, J. J., et al. (2008). NFATc3 regulates BK channel function in murine urinary bladder smooth muscle. American Journal of Physiology. Cell Physiology, 295(3), C611–C623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lee, M. Y., et al. (2011). Genome-wide microarray analyses identify the protein C receptor as a novel calcineurin/nuclear factor of activated T cells-dependent gene in vascular smooth muscle cell phenotypic modulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(11), 2665–2675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wada, H., et al. (2002). Calcineurin-GATA-6 pathway is involved in smooth muscle-specific transcription. The Journal of Cell Biology, 156(6), 983–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Miano, J. M. (2003). Serum response factor: Toggling between disparate programs of gene expression. Journal of Molecular and Cellular Cardiology, 35(6), 577–593.

    Article  CAS  PubMed  Google Scholar 

  208. Parmacek, M. S. (2007). Myocardin-related transcription factors: Critical coactivators regulating cardiovascular development and adaptation. Circulation Research, 100(5), 633–644.

    Article  CAS  PubMed  Google Scholar 

  209. Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84(3), 767–801.

    Article  CAS  PubMed  Google Scholar 

  210. Wamhoff, B. R., Bowles, D. K., & Owens, G. K. (2006). Excitation-transcription coupling in arterial smooth muscle. Circulation Research, 98(7), 868–878.

    Article  CAS  PubMed  Google Scholar 

  211. Duan, S. Z., Usher, M. G., & Mortensen, R. M. (2008). Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circulation Research, 102(3), 283–294.

    Article  CAS  PubMed  Google Scholar 

  212. Hansmann, G., & Zamanian, R. T. (2009). PPARgamma activation: A potential treatment for pulmonary hypertension. Science Translational Medicine, 1(12), 12ps14.

    Article  PubMed  CAS  Google Scholar 

  213. Wakino, S., et al. (2000). Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1→ S transition in vascular smooth muscle cells. The Journal of Biological Chemistry, 275(29), 22435–22441.

    Article  CAS  PubMed  Google Scholar 

  214. Ogawa, D., et al. (2006). Activation of peroxisome proliferator-activated receptor gamma suppresses telomerase activity in vascular smooth muscle cells. Circulation Research, 98(7), e50–e59.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Xiao Wang or Yun-Min Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Di Mise, A., Wang, YX., Zheng, YM. (2017). Role of Transcription Factors in Pulmonary Artery Smooth Muscle Cells: An Important Link to Hypoxic Pulmonary Hypertension. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_2

Download citation

Publish with us

Policies and ethics