Skip to main content

Cross Talk Between Mitochondrial Reactive Oxygen Species and Sarcoplasmic Reticulum Calcium in Pulmonary Arterial Smooth Muscle Cells

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 967))

Abstract

Hypoxic pulmonary vasoconstriction (HPV) occurs during both fetal and postnatal development and plays a critical role in matching regional alveolar perfusion with ventilation in humans and animals. HPV also contributes significantly to the development of pulmonary hypertension. Although the molecular mechanisms of HPV and pulmonary hypertension remain incompletely understood, increasing evidence demonstrates that hypoxia induces an elevated intracellular reactive oxygen species concentration ([ROS]i) in pulmonary artery smooth muscle cells (PASMCs). The increased [ROS]i is attributed to the mitochondrial electron transport chain (ETC) and plasmalemmal NADPH oxidase (NOX); however, the mitochondrial ETC is a primary source for the elevated [ROS]i. Our studies reveal that mitochondrial ROS can specifically increase the activity of protein kinase C-ε, activate NOX, and then induce more ROS production (i.e., ROS-induced ROS production, RIRP). Mitochondrial ROS production is principally mediated by Rieske iron–sulfur protein (RISP) at the complex III. The increased [ROS]i causes an elevation of intracellular Ca2+ concentration ([Ca2+]i), thereby leading to HPV and associated pulmonary hypertension. Ryanodine receptor-2 (RyR2)/Ca2+ release channel on the sarcoplasmic reticulum (SR) serves as a most valuable player in the elevated [Ca2+]i. Our recent data indicate that RyR2-induced Ca2+ release can enhance RISP-mediated increase in mitochondrial ROS concentration ([ROS]mito), and that the mitochondrial Ca2+ uniporter is involved in elevating [ROS]mito. Based on the existing reports and our unpublished data, we conclude that the cross talk between [ROS]mito and [Ca2+]i, that is RISP-dependent mitochondrial ROS-induced RyR2-mediated SR Ca2+ release (ROS-induced Ca2+ release, RICR) and RyR2-mediated SR Ca2+ release-induced RISP-dependent mitochondrial ROS production (Ca2+-induced ROS production, CIRP), may form a positive reciprocal loop in mediating HPV and also possibly pulmonary hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]i :

Intracellular Ca2+ concentration

[Ca2+]mito :

Intramitochondrial Ca2+ concentration

[ROS]i :

Intracellular ROS concentration

[ROS]mito :

Intramitochondrial ROS concentration

BSO:

Buthionine sulfoximine

CIRP:

Ca2+-induced ROS production

COPD:

Chronic obstructive pulmonary disease

DAG:

Diacylglycerol

ER/SR:

Endoplasmic reticulum/sarcoplasmic reticulum

ETC:

Electron transport chain

HPV:

Hypoxic pulmonary vasoconstriction

IP3 :

Inositol 1,4,5-trisphosphate

IP3R:

Inositol 1,4,5-trisphosphate receptor

MCU:

Mitochondrial Ca2+ uniporter

MEFs:

Mouse embryonic fibroblasts

NOX:

NADPH oxidase

PASMCs:

Pulmonary arterial smooth muscle cells

PKC:

Protein kinase C

RICR:

ROS-induced Ca2+ release

RIPR:

ROS-induced ROS production

RISP:

Rieske iron–sulfur protein

ROCK:

Rho kinase

ROS:

Reactive oxygen species

RyR2:

Ryanodine receptor 2

SOCC:

Store operated Ca2+ channel

SOD:

Superoxide dismutase

STIM:

Stromal interaction molecule

TRPC:

Canonical transient receptor potential

TRPV:

Vanilloid transient receptor potential

References

  1. Rathore, R., Zheng, Y. M., Niu, C. F., et al. (2008). Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radical Biology & Medicine, 45, 1223–1231.

    Article  CAS  Google Scholar 

  2. Wang, Q. S., Zheng, Y. M., Dong, L., Ho, Y. S., Guo, Z., & Wang, Y. X. (2007). Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes. Free Radical Biology & Medicine, 42, 642–653.

    Article  CAS  Google Scholar 

  3. Brennan, L. A., Steinhorn, R. H., Wedgwood, S., et al. (2003). Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: A role for NADPH oxidase. Circulation Research, 92, 683–691.

    Article  CAS  PubMed  Google Scholar 

  4. Killilea, D. W., Hester, R., Balczon, R., Babal, P., & Gillespie, M. N. (2000). Free radical production in hypoxic pulmonary artery smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 279, L408–L412.

    CAS  PubMed  Google Scholar 

  5. Liu, J. Q., Sham, J. S., Shimoda, L. A., Kuppusamy, P., & Sylvester, J. T. (2003). Hypoxic constriction and reactive oxygen species in porcine distal pulmonary arteries. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285, L322–L333.

    Article  CAS  PubMed  Google Scholar 

  6. Marshall, C., Mamary, A. J., Verhoeven, A. J., & Marshall, B. E. (1996). Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. American Journal of Respiratory Cell and Molecular Biology, 15, 633–644.

    Article  CAS  PubMed  Google Scholar 

  7. Rathore, R., Zheng, Y. M., Li, X. Q., et al. (2006). Mitochondrial ROS-PKCepsilon signaling axis is uniquely involved in hypoxic increase in [Ca2+]i in pulmonary artery smooth muscle cells. Biochemical and Biophysical Research Communications, 351, 784–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Waypa, G. B., Guzy, R., Mungai, P. T., et al. (2006). Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circulation Research, 99, 970–978.

    Article  CAS  PubMed  Google Scholar 

  9. Weissmann, N., Zeller, S., Schafer, R. U., et al. (2006). Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. American Journal of Respiratory Cell and Molecular Biology, 34, 505–513.

    Article  CAS  PubMed  Google Scholar 

  10. Bradford, J. R., & Dean, H. P. (1894). The pulmonary circulation. The Journal of Physiology, 16, 34–158.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, Q., Vazquez, E. J., Moghaddas, S., Hoppel, C. L., & Lesnefsky, E. J. (2003). Production of reactive oxygen species by mitochondria: Central role of complex III. The Journal of Biological Chemistry, 278, 36027–36031.

    Article  CAS  PubMed  Google Scholar 

  12. Korde, A. S., Yadav, V. R., Zheng, Y. M., & Wang, Y. X. (2011). Primary role of mitochondrial Rieske iron-sulfur protein in hypoxic ROS production in pulmonary artery myocytes. Free Radical Biology & Medicine, 50, 945–952.

    Article  CAS  Google Scholar 

  13. Harnisch, U., Weiss, H., & Sebald, W. (1985). The primary structure of the iron-sulfur subunit of ubiquinol-cytochrome c reductase from Neurospora, determined by cDNA and gene sequencing. European Journal of Biochemistry, 149, 95–99.

    Article  CAS  PubMed  Google Scholar 

  14. Zalk, R., Lehnart, S. E., & Marks, A. R. (2007). Modulation of the ryanodine receptor and intracellular calcium. Annual Review of Biochemistry, 76, 367–385.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, Y. M., Wang, Q. S., Rathore, R., et al. (2005). Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. The Journal of General Physiology, 125, 427–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liao, B., Zheng, Y. M., Yadav, V. R., Korde, A. S., & Wang, Y. X. (2011). Hypoxia induces intracellular Ca2+ release by causing reactive oxygen species-mediated dissociation of FK506-binding protein 12.6 from ryanodine receptor 2 in pulmonary artery myocytes. Antioxidants & Redox Signaling, 14, 37–47.

    Article  CAS  Google Scholar 

  17. Waypa, G. B., Marks, J. D., Guzy, R. D., et al. (2013). Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. American Journal of Respiratory and Critical Care Medicine, 187, 424–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yadav, V. R., Song, T., Joseph, L., Mei, L., Zheng, Y. M., & Wang, Y. X. (2013). Important role of PLC-gamma1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 304, L143–L151.

    Article  CAS  PubMed  Google Scholar 

  19. Bansaghi, S., Golenar, T., Madesh, M., et al. (2014). Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species. The Journal of Biological Chemistry, 289, 8170–8181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nilius, B., Owsianik, G., Voets, T., & Peters, J. A. (2007). Transient receptor potential cation channels in disease. Physiological Reviews, 87, 165–217.

    Article  CAS  PubMed  Google Scholar 

  21. Lu, W., Wang, J., Shimoda, L. A., & Sylvester, J. T. (2008). Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in Ca2+ responses to hypoxia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295, L104–L113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weissmann, N., Sydykov, A., Kalwa, H., et al. (2012). Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nature Communications, 3, 649.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goldenberg, N. M., Wang, L., Ranke, H., Liedtke, W., Tabuchi, A., & Kuebler, W. M. (2015). TRPV4 is required for hypoxic pulmonary vasoconstriction. Anesthesiology, 122, 1338–1348.

    Article  CAS  PubMed  Google Scholar 

  24. Hawkins, B. J., Irrinki, K. M., Mallilankaraman, K., et al. (2010). S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. The Journal of Cell Biology, 190, 391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, Q., Fu, X., Tian, L., et al. (2014). NOX4 mediates BMP4-induced upregulation of TRPC1 and 6 protein expressions in distal pulmonary arterial smooth muscle cells. PloS One, 9, e107135.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang, Y. X., & Zheng, Y. M. (2010). ROS-dependent signaling mechanisms for hypoxic Ca2+ responses in pulmonary artery myocytes. Antioxidants & Redox Signaling, 12, 611–623.

    Article  CAS  Google Scholar 

  27. Cogolludo, A., Moreno, L., Frazziano, G., et al. (2009). Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovascular Research, 82, 296–302.

    Article  CAS  PubMed  Google Scholar 

  28. Moreno, L., Moral-Sanz, J., Morales-Cano, D., et al. (2014). Ceramide mediates acute oxygen sensing in vascular tissues. Antioxidants & Redox Signaling, 20, 1–14.

    Article  CAS  Google Scholar 

  29. Moral-Sanz, J., Gonzalez, T., Menendez, C., et al. (2011). Ceramide inhibits Kv currents and contributes to TP-receptor-induced vasoconstriction in rat and human pulmonary arteries. American Journal of Physiology. Cell Physiology, 301, C186–C194.

    Article  CAS  PubMed  Google Scholar 

  30. Michelakis, E. D., Hampl, V., Nsair, A., et al. (2002). Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circulation Research, 90, 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  31. Weir, E. K., & Archer, S. L. (1995). The mechanism of acute hypoxic pulmonary vasoconstriction: The tale of two channels. The FASEB Journal, 9, 183–189.

    CAS  PubMed  Google Scholar 

  32. Archer, S. L., London, B., Hampl, V., et al. (2001). Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. The FASEB Journal, 15, 1801–1803.

    CAS  PubMed  Google Scholar 

  33. Archer, S. L., Wu, X. C., Thebaud, B., et al. (2004). Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: Ionic diversity in smooth muscle cells. Circulation Research, 95, 308–318.

    Article  CAS  PubMed  Google Scholar 

  34. Somlyo, A. P., & Somlyo, A. V. (2003). Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: Modulated by G proteins, kinases, and myosin phosphatase. Physiological Reviews, 83, 1325–1358.

    Article  CAS  PubMed  Google Scholar 

  35. Manickam, N., Patel, M., Griendling, K. K., Gorin, Y., & Barnes, J. L. (2014). RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. American Journal of Physiology Renal Physiology, 307, F159–F171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jernigan, N. L., Walker, B. R., & Resta, T. C. (2008). Reactive oxygen species mediate RhoA/Rho kinase-induced Ca2+ sensitization in pulmonary vascular smooth muscle following chronic hypoxia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295, L515–L529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dada, L. A., Novoa, E., Lecuona, E., Sun, H., & Sznajder, J. I. (2007). Role of the small GTPase RhoA in the hypoxia-induced decrease of plasma membrane Na,K-ATPase in A549 cells. Journal of Cell Science, 120, 2214–2222.

    Article  CAS  PubMed  Google Scholar 

  38. Santulli, G., Xie, W., Reiken, S. R., & Marks, A. R. (2015). Mitochondrial calcium overload is a key determinant in heart failure. Proceedings of the National Academy of Sciences of the United States of America, 112, 11389–11394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Montero, M., Alonso, M. T., Carnicero, E., et al. (2000). Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nature Cell Biology, 2, 57–61.

    Article  CAS  PubMed  Google Scholar 

  40. Drummond, R. M., & Fay, F. S. (1996). Mitochondria contribute to Ca2+ removal in smooth muscle cells. Pflügers Archiv, 431, 473–482.

    Article  CAS  PubMed  Google Scholar 

  41. Marchi, S., & Pinton, P. (2014). The mitochondrial calcium uniporter complex: Molecular components, structure and physiopathological implications. The Journal of Physiology, 592, 829–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hong, Z., Chen, K. H., Dasgupta, A., et al. (2016). miR-138 and miR-25 downregulate MCU, causing pulmonary arterial hypertension's cancer phenotype. American Journal of Respiratory and Critical Care Medicine, 195(4), 515–529.

    Article  Google Scholar 

  43. Patriarca, P., Cramer, R., Moncalvo, S., Rossi, F., & Romeo, D. (1971). Enzymatic basis of metabolic stimulation in leucocytes during phagocytosis: The role of activated NADPH oxidase. Archives of Biochemistry and Biophysics, 145, 255–262.

    Article  CAS  PubMed  Google Scholar 

  44. Mittal, M., Gu, X. Q., Pak, O., et al. (2012). Hypoxia induces Kv channel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radical Biology & Medicine, 52, 1033–1042.

    Article  CAS  Google Scholar 

  45. Weissmann, N., Voswinckel, R., Hardebusch, T., et al. (1999). Evidence for a role of protein kinase C in hypoxic pulmonary vasoconstriction. The American Journal of Physiology, 276, L90–L95.

    CAS  PubMed  Google Scholar 

  46. Shaifta, Y., Snetkov, V. A., Prieto-Lloret, J., et al. (2015). Sphingosylphosphorylcholine potentiates vasoreactivity and voltage-gated Ca2+ entry via NOX1 and reactive oxygen species. Cardiovascular Research, 106, 121–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kroller-Schon, S., Steven, S., Kossmann, S., et al. (2014). Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxidants & Redox Signaling, 20, 247–266.

    Article  Google Scholar 

  48. Schulz, E., Wenzel, P., Munzel, T., & Daiber, A. (2014). Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxidants & Redox Signaling, 20, 308–324.

    Article  CAS  Google Scholar 

  49. Mistry, Y., Poolman, T., Williams, B., & Herbert, K. E. (2013). A role for mitochondrial oxidants in stress-induced premature senescence of human vascular smooth muscle cells. Redox Biology, 1, 411–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dikalov, S. I., Nazarewicz, R. R., Bikineyeva, A., et al. (2014). Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxidants & Redox Signaling, 20, 281–294.

    Article  CAS  Google Scholar 

  51. Daiber, A., Di Lisa, F., Oelze, M., et al. (2017). Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. British Journal of Pharmacology, 174(12), 1670–1689. doi:10.1111/bph.13403.

    Article  CAS  PubMed  Google Scholar 

  52. Doughan, A. K., Harrison, D. G., & Dikalov, S. I. (2008). Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: Linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circulation Research, 102, 488–496.

    Article  CAS  PubMed  Google Scholar 

  53. Kimura, S., Zhang, G. X., Nishiyama, A., et al. (2005). Mitochondria-derived reactive oxygen species and vascular MAP kinases: Comparison of angiotensin II and diazoxide. Hypertension, 45, 438–444.

    Article  CAS  PubMed  Google Scholar 

  54. Wenzel, P., Mollnau, H., Oelze, M., et al. (2008). First evidence for a crosstalk between mitochondrial and NADPH oxidase-derived reactive oxygen species in nitroglycerin-triggered vascular dysfunction. Antioxidants & Redox Signaling, 10, 1435–1447.

    Article  CAS  Google Scholar 

  55. Zibara, K., Zeidan, A., Bjeije, H., Kassem, N., Badran, B., & El-Zein, N. (2017). ROS mediates interferon gamma induced phosphorylation of Src, through the Raf/ERK pathway, in MCF-7 human breast cancer cell line. Journal of Cell Communication and Signaling, 11(1), 57–67.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Ms. Sudeshna Sadhu and Mr. Vic Maietta for proofreading of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Min Zheng or Yong-Xiao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Song, T., Zheng, YM., Wang, YX. (2017). Cross Talk Between Mitochondrial Reactive Oxygen Species and Sarcoplasmic Reticulum Calcium in Pulmonary Arterial Smooth Muscle Cells. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_17

Download citation

Publish with us

Policies and ethics