Skip to main content

Redox Signaling and Persistent Pulmonary Hypertension of the Newborn

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 967))

Abstract

Reactive oxygen species (ROS) are redox-signaling molecules that are critically involved in regulating endothelial cell functions, host defense, aging, and cellular adaptation. Mitochondria are the major sources of ROS and important sources of redox signaling in pulmonary circulation. It is becoming increasingly evident that increased mitochondrial oxidative stress and aberrant signaling through redox-sensitive pathways play a direct causative role in the pathogenesis of many cardiopulmonary disorders including persistent pulmonary hypertension of the newborn (PPHN). This chapter highlights redox signaling in endothelial cells, antioxidant defense mechanism, cell responses to oxidative stress, and their contributions to disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

Asymmetric dimethyl arginine

AKT:

Protein kinase B

BH4:

Tetrahydrobiopterin

ECMO:

Extracorporeal membrane oxygenation

ECs:

Endothelial cells

eNOS:

Endothelial nitric oxide synthase

ET1:

Endothelin 1

GCH1:

GTP cyclohydrolase 1

H2O2 :

Hydrogen peroxide

HIFs:

Hypoxia-inducible factors

HOCl:

Hypochloric acid

hsp70 and 90:

Heat shock protein 70 and 90

iNO:

Inhaled nitric oxide

KEAP1:

Kelch-like ECH-associated protein 1

NO:

Nitric oxide

Noxes:

NADPH oxidases

NRF2:

Nuclear factor erythroid 2-related factor 2

O2 :

Superoxide

ONOO :

Peroxylnitrite

PA:

Pulmonary artery

PASMCs:

Pulmonary artery smooth muscle cells

PDE3 and PDE5:

Phosphodiesterase-3 and -5

PI3K:

Phosphoinositol-3 kinase

PPHN:

Persistent pulmonary hypertension of the newborn

RDS:

Respiratory distress syndrome

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

VSMCs:

Vascular smooth muscle cells

References

  1. Shaul, P. W., & Wells, L. B. (1994). Oxygen modulates nitric oxide production selectively in fetal pulmonary endothelial cells. American Journal of Respiratory and Critical Care Medicine, 11, 432–438.

    CAS  Google Scholar 

  2. Shaul, P. W., Yuhanna, I. S., German, Z., Chen, Z., Steinhorn, R. H., & Morin, F. C., III. (1997). Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 272, L1005–L1012.

    CAS  Google Scholar 

  3. Holley, A. K., Dhar, S. K., Xu, Y., & St Clair, D. K. (2012). DK. Manganese superoxide dismutase: Beyond life and death. Amino Acids, 42, 139–158.

    Article  CAS  PubMed  Google Scholar 

  4. Afolayan, A. J., Eis, A., Alexander, M., Michalkiewicz, T., Teng, R. J., Lakshminrusimha, S., & Konduri, G. G. (2016). Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 310(1), L40–L49. doi:10.1152/ajplung.00392.2014.

    Article  PubMed  Google Scholar 

  5. Tai, M. H., Wang, L. L., Wu, K. L., & Chan, J. Y. (2005). Increased superoxide anion in rostral ventrolateral medulla contributes to hypertension in spontaneously hypertensive rats via interactions with nitric oxide. Free Radical Biology and Medicine, 38, 450–462, 20.

    Article  CAS  PubMed  Google Scholar 

  6. Teng, R. J., Eis, A., Bakhutashvili, I., Arul, N., & Konduri, G. G. (2009). Increased superoxide production contributes to the impaired angiogenesis of fetal pulmonary arteries with in utero pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297, L184–L195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Villamor, E., LeCras, T. D., Horan, M. P., Halbower, A. C., Tuder, R. M., & Abman, S. H. (1997). Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. American Journal of Physiology. Lung Cellular and Molecular Physiology, 272, L1013–L1020.

    CAS  Google Scholar 

  8. Finkel, T. (2001). Reactive oxygen species and signal transduction. IUBMB Life, 52, 3–6.

    Article  CAS  PubMed  Google Scholar 

  9. Balaban, R. S., Nemoto, S., & Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell, 120, 483–495.

    Article  CAS  PubMed  Google Scholar 

  10. Rhee, S. G., Kang, S. W., Jeong, W., Chang, T. S., Yang, K. S., & Woo, H. A. (2005a). Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Current Opinion in Cell Biology, 17, 183–189.

    Article  CAS  PubMed  Google Scholar 

  11. Montezano, A. C., & Touyz, R. M. (2012). Molecular mechanisms of hypertension-reactive oxygen species and antioxidants: A basic science update for the clinician. The Canadian Journal of Cardiology, 28, 288–295.

    Article  CAS  PubMed  Google Scholar 

  12. Jackson, M. J., Papa, S., Bolanos, J., Bruckdorfer, R., Carlsen, H., Elliott, R. M., et al. (2002). Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Molecular Aspects of Medicine, 23, 209–285.

    Article  CAS  PubMed  Google Scholar 

  13. Montezano, A. C., Burger, D., Ceravolo, G. S., Yusuf, H., Montero, M., & Touyz, R. M. (2011). Novel Nox homologues in the vasculature: Focusing on Nox4 and Nox5. Clinical Science (London, England), 120(4), 131–141. doi:10.1042/CS20100384.

    Article  CAS  Google Scholar 

  14. Burdon, R. H. (1996). Control of cell proliferation by reactive oxygen species. Biochemical Society Transactions, 24, 1028–1032.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor, E. R., Brown, S. E., Dahm, C. C., Costa, N. J., Runswick, M. J., & Murphy, M. P. (2004). Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: Implications for mitochondrial Redox regulation and antioxidant defense. The Journal of Biological Chemistry, 279, 47939–47951.

    Article  PubMed  Google Scholar 

  16. Kovacic, B., & Vlaisavljevic, V. (2008). Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: A prospective study on sibling oocytes. Reproductive Biomedicine Online, 17, 229–236.

    Article  CAS  PubMed  Google Scholar 

  17. Lambeth, J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews. Immunology, 4, 181–189.

    Article  CAS  PubMed  Google Scholar 

  18. Franco, A. A., Odom, R. S., & Rando, T. A. (1999). Regulation of antioxidant enzyme gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle. Free Radical Biology & Medicine, 27, 1122–1132.

    Article  CAS  Google Scholar 

  19. Kotch, L. E., Iyer, N. V., Laughner, E., & Semenza, G. L. (1999). Defective vascularization of HIF-1α-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Developmental Biology, 209, 254–267.

    Article  CAS  PubMed  Google Scholar 

  20. Rhee, S. G., Yang, K. S., Kang, S. W., Woo, H. A., & Chang, T. S. (2005b). Controlled elimination of intracellular H2O2: Regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxidants & Redox Signaling, 7, 619–626.

    Article  CAS  Google Scholar 

  21. Belousov, V. V., Fradkov, A. F., Lukyanov, K. A., Staroverov, D. B., Shakhbazov, K. S., Terskikh, A. V., & Lukyanov, S. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Methods, 3, 281–286.

    Article  CAS  PubMed  Google Scholar 

  22. Rhee, S. G., Bae, Y. S., Lee, S. R., & Kwon, J. (2000). Hydrogen peroxide: A key messenger that modulates protein phosphorylation through cysteine oxidation. Science’s STKE, 2000, pe1.

    Article  CAS  PubMed  Google Scholar 

  23. Goldschmidt-Clermont, P. J., & Moldovan, L. (1999). Stress, superoxide, and signal transduction. Gene Expression, 7, 255–260.

    CAS  PubMed  Google Scholar 

  24. Guzy, R. D., & Schumacker, P. T. (2006). Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia. Experimental Physiology, 91(5), 807–819. doi:10.1113/expphysiol.2006.033506.

    Article  CAS  PubMed  Google Scholar 

  25. Chandel, N. S., McClintock, D. S., Feliciano, C. E., Wood, T. M., Melendez, J. A., Rodriguez, A. M., & Schumacker, P. T. (2000). Reactive oxygen species generated at complex III during hypoxia stablize HIF-1a: A mechanism of oxygen sensing. The Journal of Biological Chemistry, 275, 25130–25138.

    Article  CAS  PubMed  Google Scholar 

  26. Bowers, R., Cool, C., Murphy, R. C., Tuder, R. M., Hopken, M. W., Flores, S. C., & Voelkel, N. F. (2004). Oxidative stress in severe pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 169, 764–769.

    Article  PubMed  Google Scholar 

  27. Fink, B. D., O’Malley, Y., Dake, B. L., Ross, N. C., Prisinzano, T. E., & Sivitz, W. I. (2009). Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells. PLoS One, 4, e4250.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fridovich, I. (1978). The biology of oxygen radicals. Science, 201, 875–880.

    Article  CAS  PubMed  Google Scholar 

  29. Carnesecchi, S., Deffert, C., Pagano, A., Garrido-Urbani, S., Metrailler-Ruchonnet, I., Schappi, M., Donati, Y., Matthay, M. A., Krause, K. H., & Barazzone Argiroffo, C. (2009). NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice. American Journal of Respiratory and Critical Care Medicine, 180, 972–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun, J., Ren, X., & Simpkins, J. W. (2015). Sequential upregulation of superoxide dismutase 2 and heme oxygenase 1 by tert-butylhydroquinone protects mitochondria during oxidative stress. Molecular Pharmacology, 88(3), 437–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bell, E., Klimova, T. A., Eisenbart, J., Schumacker, P. T., & Chandel, N. S. (2007). Mitochondrial ROS trigger HIF-dependent extension of replicative lifespan during hypoxia. Molecular and Cellular Biology, 27, 5737–5745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C., & Schumacker, P. T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences of the United States of America, 95, 11715–11720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waypa, G. B., & Schumacker, P. T. (2005). Hypoxic pulmonary vasoconstriction: Redox events in oxygen sensing. Journal of Applied Physiology, 98(1), 404–414. doi:10.1152/japplphysiol.00722.2004.

    Article  CAS  PubMed  Google Scholar 

  34. Groenman, F., Rutter, M., Caniggia, I., Tibboel, D., & Post, M. (2007). Hypoxia-inducible factors in the first trimester human lung. The Journal of Histochemistry and Cytochemistry, 55, 355–363.

    Article  CAS  PubMed  Google Scholar 

  35. Tian, H., McKnight, S. L., & Russell, D. W. (1997). Endothelial pas domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes & Development, 11, 72–82.

    Article  CAS  Google Scholar 

  36. Grover, T. R., Asikainen, T. M., Kinsella, J. P., Abman, S. H., & White, C. W. (2007). Hypoxia-inducible factors HIF-1a and HIF-2a are decreased in an experimental model of severe respiratory distress syndrome in preterm lambs. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292, L1345–L1351.

    Article  CAS  PubMed  Google Scholar 

  37. Wedgwood, S., Lakshminrusimha, S., Schumacker, P. T., & Steinhorn, R. H. (2010). Hypoxia inducible factor signaling and experimental persistent pulmonary hypertension of the newborn. Respiratory Physiology & Neurobiology, 174(3), 272–281. doi:10.1016/j.resp.2010.08.018. Epub 2010 Sep 6.

    Article  Google Scholar 

  38. Farrow, K. N., Wedgwood, S., Lee, K. J., Czech, L., Gugino, S. F., Lakshminrusimha, S., Schumacker, P. T., & Steinhorn, R. H. (2005). Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn. American Journal of Physiology. Lung Cellular and Molecular Physiology, 289(5), L798–L806. Epub 2005 Jun 17.

    Article  Google Scholar 

  39. Farrow, K. N., Smith, C. L., Czech, L., Lakshminrushimha, S., Gugino, S. F., Russell, J. A., Schumacker, P. T., & Steinhorn, R. Mitochondrial oxidative stress increases PDE5 expression and activity in ovine fetal pulmonary artery smooth muscle cells (FPASMC). Respir physiol and neurobiol. 2010; 174(3): 272–281.

    Google Scholar 

  40. Deruelle, P., Grover, T. R., & Abman, S. H. (2015). Pulmonary vascular effects of nitric oxide-cGMP augmentation in a model of chronic pulmonary hypertension in fetal and neonatal sheep. Frontiers in Pharmacology, 6, 47. doi:10.3389/fphar.2015.00047. eCollection 2015.

    Google Scholar 

  41. Dikalov, S. (2011). Cross talk between mitochondria and NADPH oxidases. Free Radical Biology & Medicine, 51(7), 1289–1301. doi:10.1016/j.freeradbiomed.2011.06.033. Epub 2011 Jul 6.

    Article  CAS  Google Scholar 

  42. Daiber, A. (2010). Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochimica et Biophysica Acta, 1797(6–7), 897–906. doi:10.1016/j.bbabio.2010.01.032. Epub 2010 Feb 1.

    Article  CAS  PubMed  Google Scholar 

  43. Kojima, S., Ona, S., Iizuka, I., Arai, T., Mori, H., & Kubota, K. (1995). Antioxidative activity of 5,6,7,8-tetrahydrobiopterin and its inhibitory effect on paraquat-induced cell toxicity in cultured rat hepatocytes. Free Radical Research, 23, 419–430.

    Article  CAS  PubMed  Google Scholar 

  44. Campos, R. R. (2009). Oxidative stress in the brain and arterial hypertension. Hypertension Research, 32, 1047–1048.

    Article  PubMed  Google Scholar 

  45. Brennan, L. A., Steinhorn, R. H., Wedgwood, S., Mata-Greenwood, E., Roark, E. A., Russell, J. A., & Black, S. M. (2003). Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: A role for NADPH oxidase. Circulation Research, 92(6), 683–691.

    Article  CAS  PubMed  Google Scholar 

  46. Li, J. M., & Shah, A. M. (2004). Endothelial cell superoxide generation: Regulation and relevance for cardiovascular pathophysiology. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 287, R1014–R1030.

    Article  CAS  PubMed  Google Scholar 

  47. Dikalova, A. E., Gongora, M. C., Harrison, D. G., Lambeth, J. D., Dikalov, S., & Griendling, K. K. (2010). Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. American Journal of Physiology. Heart and Circulatory Physiology, 299, H673–H679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ismail, S., Sturrock, A., Wu, P., Cahill, B., Norman, K., Huecksteadt, T., Sanders, K., Kennedy, T., & Hoidal, J. (2009). NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: The role of autocrine production of transforming growth factor-β1 and insulin-like growth factor binding protein-3. American Journal of Physiology. Lung Cellular and Molecular Physiology, 296, L489–L499.

    Article  CAS  PubMed  Google Scholar 

  49. Green, D. E., Murphy, T. C., Kang, B. Y., Kleinhenz, J. M., Szyndralewiez, C., Page, P., Sutliff, R. L., & Hart, C. M. (2012). The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation. American Journal of Respiratory Cell and Molecular Biology, 47(5), 718–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, D. D., Dong, Y. G., Yuan, H., & Chen, A. F. (2012). Endothelin 1 activation of endothelin A receptor/NADPH oxidase pathway and diminished antioxidants critically contribute to endothelial progenitor cell reduction and dysfunction in salt-sensitive hypertension. Hypertension, 59, 1037–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, J. M., & Shah, A. M. (2002). Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. The Journal of Biological Chemistry, 277, 19952–19960.

    Article  CAS  PubMed  Google Scholar 

  52. Brar, S. S., Corbin, Z., Kennedy, T. P., Hemendinger, R., Thornton, L., Bommarius, B., et al. (2003). NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. American Journal of Physiology. Cell Physiology, 285, C353–C369.

    Article  CAS  PubMed  Google Scholar 

  53. Lassegue, B., & Clempus, R. E. (2003). Vascular NAD(P)H oxidases: Specific features, expression, and regulation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 285, R277–R297.

    Article  CAS  PubMed  Google Scholar 

  54. Geiszt, M., Lekstrom, K., Witta, J., & Leto, T. L. (2003). Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. The Journal of Biological Chemistry, 278, 20006–20012.

    Article  CAS  PubMed  Google Scholar 

  55. Geiszt, M., Lekstrom, K., Brenner, S., Hewitt, S. M., Dana, R., Malech, H. L., et al. (2003). NAD(P)H oxidase 1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91phox in the regulated production of superoxide by phagocytes. Journal of Immunology, 171, 299–306.

    Article  CAS  Google Scholar 

  56. Takeya, R., Ueno, N., Kami, K., Taura, M., Kohjima, M., Izaki, T., et al. (2003). Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. The Journal of Biological Chemistry, 278, 25234–25246.

    Article  CAS  PubMed  Google Scholar 

  57. Souza, H. P., Liu, X., Samouilov, A., Kuppusamy, P., Laurindo, F. R., & Zweier, J. L. (2002). Quantitation of superoxide generation and substrate utilization by vascular NAD(P)H oxidase. American Journal of Physiology. Heart and Circulatory Physiology, 282, H466–H474.

    Article  CAS  PubMed  Google Scholar 

  58. Wedgwood, S., Lakshminrusimha, S., Czech, L., Schumacker, P. T., & Steinhorn, R. H. (2013). Increased p22phox/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. Antioxidants & Redox Signaling, 18(14), 1765–1776.

    Article  CAS  Google Scholar 

  59. Banfi, B., Clark, R. A., Steger, K., & Krause, K. H. (2003). Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. The Journal of Biological Chemistry, 278, 3510–3513.

    Article  CAS  PubMed  Google Scholar 

  60. Sud, N., & Black, S. M. (2009). Endothelin-1 impairs nitric oxide signaling in endothelial cells through a protein kinase Cdelta-dependent activation of STAT3 and decreased endothelial nitric oxide synthase expression. DNA and Cell Biology, 28(11), 543–553. doi:10.1089/dna.2009.0865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gien, J., Tseng, N., Seedorf, G., Roe, G., & Abman, S. H. (2013). Endothelin-1 impairs angiogenesis in vitro through Rho-kinase activation after chronic intrauterine pulmonary hypertension in fetal sheep. Pediatric Research, 73(3), 252–262. doi:10.1038/pr.2012.177. Epub 2012 Nov 30.

    Article  CAS  PubMed  Google Scholar 

  62. Galli, F., Piroddi, M., Annetti, C., Aisa, C., Floridi, E., & Floridi, A. (2005). Oxidative stress and reactive oxygen species. Contributions to Nephrology, 149, 240–260.

    Article  CAS  PubMed  Google Scholar 

  63. Dikalova, A. E., Aschner, J. L., Kaplowitz, M. R., Summar, M., & Fike, C. D. (2016). Tetrahydrobiopterin oral therapy recouples eNOS and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. American Journal of Physiology. Lung Cellular and Molecular Physiology, 311(4), L743–L753. doi:10.1152/ajplung.00238.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Teng, R. J., Du, J., Xu, H., Bakhutashvili, I., Eis, A., Shi, Y., Pritchard, K. A., Jr., & Konduri, G. G. (2011). Sepiapterin improves angiogenesis of pulmonary artery endothelial cells with in utero pulmonary hypertension by recoupling endothelial nitric oxide synthase. American Journal of Physiology. Lung Cellular and Molecular Physiology, 301(3), L334–L345. doi:10.1152/ajplung.00316.2010. Epub 2011 May 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bouras, G., Deftereos, S., Tousoulis, D., Giannopoulos, G., Chatzis, G., Tsounis, D., Cleman, M. W., & Stefanadis, C. (2013). Asymmetric Dimethylarginine (ADMA): A promising biomarker for cardiovascular disease? Current Topics in Medicinal Chemistry, 13(2), 180–200.

    Article  CAS  PubMed  Google Scholar 

  66. Fulton, D. J. (2016). Transcriptional and posttranslational regulation of eNOS in the endothelium. Advances in Pharmacology, 77, 29–64. doi:10.1016/bs.apha.2016.04.001. Epub 2016 May 18.

    Article  CAS  PubMed  Google Scholar 

  67. Hammer, L. W., Ligan, A. L., & Hester, R. L. (2001). ATP-mediated release of arachidonic acid metabolites from venular endothelium causes arteriolar dilation. American Journal of Physiology. Heart and Circulatory Physiology, 280, H2616–H2622.

    CAS  PubMed  Google Scholar 

  68. Garcia-Cardena, G., Fan, R., Shah, V., Sorrentino, R., Cirino, G., Papapetropoulos, A., & Sessa, W. C. (1998). Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature, 392, 821–824.

    Article  CAS  PubMed  Google Scholar 

  69. Konduri, G. G., Bakhutashvili, I., Eis, A., & Pritchard, K., Jr. (2007). Oxidant stress from uncoupled nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension. American Journal of Physiology. Heart and Circulatory Physiology, 292(4), H1812–H1820. Epub 2006 Dec 1.

    Article  CAS  PubMed  Google Scholar 

  70. Levonen, A. L., Landar, A., Ramachandran, A., Ceaser, E. K., Dickinson, D. A., Zanoni, G., Morrow, J. D., & Darley-Usmar, V. M. (2004). Cellular mechanisms of redox cell signalling: Role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. The Biochemical Journal, 378, 373–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Paravicini, T. M., & Touyz, R. M. (2006). Redox signaling in hypertension. Cardiovascular Research, 71, 247–258.

    Article  CAS  PubMed  Google Scholar 

  72. Beltran, B., Orsi, A., Clementi, E., & Moncada, S. (2000). Oxidative stress and S-nitrosylation of proteins in cells. British Journal of Pharmacology, 129, 953–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Benhar, M., Forrester, M. T., & Stamler, J. S. (2009). Protein denitrosylation: Enzymatic mechanisms and cellular functions. Nature Reviews. Molecular Cell Biology, 10, 721–732.

    CAS  PubMed  Google Scholar 

  74. Boivin, B., Yang, M., & Tonks, N. K. (2010). Targeting the reversibly oxidized protein tyrosine phosphatase superfamily. Science Signaling, 3, pl2.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rhee, S. G., Kang, S. W., Chang, T. S., Jeong, W., & Kim, K. (2001). Peroxiredoxin, a novel family of peroxidases. IUBMB Life, 52, 35–41.

    Article  CAS  PubMed  Google Scholar 

  76. Hayes, J. D., McMahon, M., Chowdhry, S., & Dinkova-Kostova, A. T. (2010). Cancer chemoprevention mechanisms mediated through the keap1-Nrf2 pathway. Antioxidants & Redox Signaling, 13, 1713–1748.

    Article  CAS  Google Scholar 

  77. Son, Y., Cheong, Y. K., Kim, N. H., Chung, H. T., Kang, D. G., & Pae, H. O. (2011). Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? Journal of Signal Transduction, 2011, 792639.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Torres, M., & Forman, H. J. (2003). Redox signaling and the MAP kinase pathways. BioFactors, 17, 287–296.

    Article  CAS  PubMed  Google Scholar 

  79. Abe, J., & Berk, B. C. (1999). Fyn and JAK2 mediate Ras activation by reactive oxygen species. The Journal of Biological Chemistry, 274, 21003–21010.

    Article  CAS  PubMed  Google Scholar 

  80. Frank, G. D., Eguchi, S., Yamakawa, T., Tanaka, S., Inagami, T., & Motley, E. D. (2000). Involvement of reactive oxygen species in the activation of tyrosine kinase and extracellular signal-regulated kinase by angiotensin II. Endocrinology, 141, 3120–3126.

    Article  CAS  PubMed  Google Scholar 

  81. Muslin, A. J. (2008). MAPK signalling in cardiovascular health and disease: Molecular mechanisms and therapeutic targets. Clinical Science (London, England), 115, 203–218.

    Article  CAS  Google Scholar 

  82. Wang, S., Zhu, H., & Chen, C. (2000). Reactive oxygen species contribute to the induction of superoxide dismutase during heat shock in cultured rat neonatal cardiomyocytes. Chinese Medical Journal, 113, 606–609.

    CAS  PubMed  Google Scholar 

  83. Gregory, E. M., & Fridovich, I. (1973). Oxygen toxicity and the superoxide dismutase. Journal of Bacteriology, 114, 1193–1197.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Faraci, F. M., & Didion, S. P. (2004). Vascular protection: Superoxide dismutase isoforms in the vessel wall. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1367–1373.

    Article  CAS  PubMed  Google Scholar 

  85. Storz, P., Döppler, H., & Toker, A. (2005). Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Molecular and Cellular Biology, 25, 8520–8530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Afolayan, A. J., Teng, R.-J., Eis, A., Rana, U., Broniowska, K. A., Corbett, J. A., Pritchard, K., & Konduri, G. G. (2014). Inducible HSP70 regulates superoxide dismutase-2 and mitochondrial oxidative stress in the endothelial cells from developing lungs. American Journal of Physiology. Lung Cellular and Molecular Physiology, 306(4), L351–L360.

    Article  CAS  PubMed  Google Scholar 

  87. Afolayan, A. J., Eis, A., Teng, R. J., Bakhutashvili, I., Kaul, S., Davis, J. M., & Konduri, G. G. (2012). Decreases in manganese superoxide dismutase expression and activity contribute to oxidative stress in persistent pulmonary hypertension of the newborn. American Journal of Physiology. Lung Cellular and Molecular Physiology, 303(10), L870–L879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fukai, T., Folz, R. J., Landmesser, U., & Harrison, D. G. (2002). Extracellular superoxide dismutase and cardiovascular disease. Cardiovascular Research, 55, 239–249.

    Article  CAS  PubMed  Google Scholar 

  89. Farrow, K. N., Lakshminrusimha, S., Czech, L., Groh, B. S., Gugino, S. F., Davis, J. M., Russell, J. A., & Steinhorn, R. H. (2010). SOD and inhaled nitric oxide normalize phosphodiesterase 5 expression and activity in neonatal lambs with persistent pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299(1), L109–L116. doi:10.1152/ajplung.00309.2009. Epub 2010 Apr 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gongora, M. C., Qin, Z., Laude, K., Kim, H. W., McCann, L., Folz, J. R., Dikalov, S., Fukai, T., & Harrison, D. G. (2006). Role of extracellular superoxide dismutase in hypertension. Hypertension, 48, 473–481.

    Article  CAS  PubMed  Google Scholar 

  91. Chu, Y., Iida, S., Lund, D. D., Weiss, R. M., DiBona, G. F., Watanabe, Y., Faraci, F. M., & Heistad, D. D. (2003). Gene transfer of extracellular superoxide dismutase reduces arterial pressure in spontaneously hypertensive rats: Role of heparin-binding domain. Circulation Research, 92, 461–468.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeleye J. Afolayan M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharma, M., Afolayan, A.J. (2017). Redox Signaling and Persistent Pulmonary Hypertension of the Newborn. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_16

Download citation

Publish with us

Policies and ethics