Skip to main content

Effects of Hyperoxia on the Developing Airway and Pulmonary Vasculature

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 967))

Abstract

Although it is necessary and part of standard practice, supplemental oxygen (40–90% O2) or hyperoxia is a significant contributing factor to development of bronchopulmonary dysplasia, persistent pulmonary hypertension, recurrent wheezing, and asthma in preterm infants. This chapter discusses hyperoxia and the role of redox signaling in the context of neonatal lung growth and disease. Here, we discuss how hyperoxia promotes dysfunction in the airway and the known redox-mediated mechanisms that are important for postnatal vascular and alveolar development. Whether in the airway or alveoli, redox pathways are important and greatly influence the neonatal lung.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Colin, A. A., McEvoy, C., & Castile, R. G. (2010). Respiratory morbidity and lung function in preterm infants of 32 to 36 weeks’ gestational age. Pediatrics, 126(1), 115–128. doi:10.1542/peds.2009-1381.

  2. DeMauro, S. B., Millar, D., & Kirpalani, H. (2014). Noninvasive respiratory support for neonates. Current Opinion in Pediatrics, 26(2), 157–162. doi:10.1097/MOP.0000000000000066. Epub 2014/03/19. PubMed PMID: 24632541.

    Article  PubMed  Google Scholar 

  3. Ho, J. J., Subramaniam, P., & Davis, P. G. (2015). Continuous distending pressure for respiratory distress in preterm infants. Cochrane Database of Systematic Reviews, 7, CD002271. doi:10.1002/14651858.CD002271.pub2. Epub 2015/07/05. PubMed PMID: 26141572.

    Google Scholar 

  4. Martin, J. A., Osterman, M. J., & Sutton, P. D. (2010). Are preterm births on the decline in the United States? Recent data from the National Vital Statistics System. NCHS Data Brief, 39, 1–8. Epub 2010/07/08. PubMed PMID: 20604990.

    Google Scholar 

  5. Doyle, L. W., & Anderson, P. J. (2010). Pulmonary and neurological follow-up of extremely preterm infants. Neonatology, 97(4), 388–394.

    Article  PubMed  Google Scholar 

  6. Hibbs, A. M., Walsh, M. C., Martin, R. J., Truog, W. E., Lorch, S. A., Alessandrini, E., Cnaan, A., Palermo, L., Wadlinger, S. R., Coburn, C. E., Ballard, P. L., & Ballard, R. A. (2008). One-year respiratory outcomes of preterm infants enrolled in the Nitric Oxide (to prevent) Chronic Lung Disease trial. The Journal of Pediatrics, 153(4), 525–529.e2. doi:10.1016/j.jpeds.2008.04.033.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Holditch-Davis, D., Merrill, P., Schwartz, T., & Scher, M. (2008). Predictors of wheezing in prematurely born children. Journal of Obstetric, Gynecologic & Neonatal Nursing, 37(3), 262–273. doi:10.1111/j.1552-6909.2008.00238.x.

    Article  Google Scholar 

  8. Kumar, R. (2008). Prenatal factors and the development of asthma. Current Opinion in Pediatrics, 20(6), 682–687. doi:10.1097/MOP.0b013e3283154f26. PubMed PMID: 00008480-200812000-00012.

    Article  PubMed  Google Scholar 

  9. Kwinta, P., & Pietrzyk, J. J. (2010). Preterm birth and respiratory disease in later life. Expert Review of Respiratory Medicine, 4(5), 593–604. doi:10.1586/ers.10.59.

    Article  PubMed  Google Scholar 

  10. Bland, R. D. (2005). Neonatal chronic lung disease in the post-surfactant era. Biology of the Neonate, 88(3), 181–191. Epub 2005/10/08. PubMed PMID: 16210840. doi:10.1159/000087581.

    Article  PubMed  Google Scholar 

  11. Chess, P. R., D’Angio, C. T., Pryhuber, G. S., & Maniscalco, W. M. (2006). Pathogenesis of bronchopulmonary dysplasia. Seminars in Perinatology, 30(4), 171–178. doi:10.1053/j.semperi.2006.05.003.

    Article  PubMed  Google Scholar 

  12. Schulzke, S. M., & Pillow, J. J. (2010). The management of evolving bronchopulmonary dysplasia. Paediatric Respiratory Reviews, 11(3), 143–148. doi:10.1016/j.prrv.2009.12.005.

    Article  PubMed  Google Scholar 

  13. Jobe, A. H. (2011). The new bronchopulmonary dysplasia. Current Opinion in Pediatrics, 23(2), 167–172. doi:10.1097/MOP.0b013e3283423e6b. PubMed PMID: 21169836; PMCID: PMC3265791.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Greenough, A. (2008). Long-term pulmonary outcome in the preterm infant. Neonatology, 93(4), 324–327. doi:10.1159/000121459. Epub 2008/06/06. PubMed PMID: 18525217.

    Article  PubMed  Google Scholar 

  15. Holmstrom, K. M., & Finkel, T. (2014). Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature Reviews. Molecular Cell Biology, 15(6), 411–421. doi:10.1038/nrm3801. PubMed PMID: 24854789.

    Article  CAS  PubMed  Google Scholar 

  16. Silva, D. M., Nardiello, C., Pozarska, A., & Morty, R. E. (2015). Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 309(11), L1239–L1272. doi:10.1152/ajplung.00268.2015. PubMed PMID: 26361876.

    CAS  PubMed  Google Scholar 

  17. Klein, R. B., & Huggins, B. W. (1994). Chronic bronchitis in children. Seminars in Respiratory Infections, 9(1), 13–22. Epub 1994/03/01. PubMed PMID: 7973162.

    CAS  PubMed  Google Scholar 

  18. Ng, D. K., Lau, W. Y., & Lee, S. L. (2000). Pulmonary sequelae in long-term survivors of bronchopulmonary dysplasia. Pediatrics International, 42(6), 603–607. Epub 2001/02/24. PubMed PMID: 11192514.

    Article  CAS  PubMed  Google Scholar 

  19. Speer, C. P., & Silverman, M. (1998). Issues relating to children born prematurely. The European Respiratory Journal. Supplement, 27, 13s–16s. Epub 1998/08/12. PubMed PMID: 9699778.

    CAS  PubMed  Google Scholar 

  20. McEvoy, C., Venigalla, S., Schilling, D., Clay, N., Spitale, P., & Nguyen, T. (2013). Respiratory function in healthy late preterm infants delivered at 33–36 weeks of gestation. Journal of Pediatrics, 162(3), 464–469. doi:10.1016/j.jpeds.2012.09.042. PubMed PMID: 23140884; PMCID: PMC3683449.

    Article  PubMed  Google Scholar 

  21. Ali, N. K., Jafri, A., Sopi, R. B., Prakash, Y. S., Martin, R. J., & Zaidi, S. I. (2012). Role of arginase in impairing relaxation of lung parenchyma of hyperoxia-exposed neonatal rats. Neonatology, 101(2), 106–115. doi:10.1159/000329540. Epub 2011/09/29. PubMed PMID: 21952491; PMCID: 3223066.

    Article  CAS  PubMed  Google Scholar 

  22. Iben, S. C., Haxhiu, M. A., Farver, C. F., Miller, M. J., & Martin, R. J. (2006). Short-term mechanical ventilation increases airway reactivity in rat pups. Pediatric Research, 60(2), 136–140. doi:10.1203/01.pdr.0000227447.55247.7d. Epub 2006/07/26. PubMed PMID: 16864692.

    Article  PubMed  Google Scholar 

  23. Smith, P. G., Dreshaj, A., Chaudhuri, S., Onder, B. M., Mhanna, M. J., & Martin, R. J. (2007). Hyperoxic conditions inhibit airway smooth muscle myosin phosphatase in rat pups. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292(1), L68–L73. doi:10.1152/ajplung.00460.2005. Epub 2007/01/12. PubMed PMID: 17215435.

    Article  CAS  PubMed  Google Scholar 

  24. Yao, Q., Haxhiu, M. A., Zaidi, S. I., Liu, S., Jafri, A., & Martin, R. J. (2005). Hyperoxia enhances brain-derived neurotrophic factor and tyrosine kinase B receptor expression in peribronchial smooth muscle of neonatal rats. American Journal of Physiology. Lung Cellular and Molecular Physiology, 289(2), L307–L314. doi:10.1152/ajplung.00030.2005. Epub 2005/04/12. PubMed PMID: 15821016.

    Article  CAS  PubMed  Google Scholar 

  25. Clapham, D. E. (2007). Calcium signaling. Cell, 131(6), 1047–1058. doi:10.1016/j.cell.2007.11.028. PubMed PMID: 18083096.

    Article  CAS  PubMed  Google Scholar 

  26. Bentley, J. K., & Hershenson, M. B. (2008). Airway smooth muscle growth in asthma: Proliferation, hypertrophy, and migration. Proceedings of the American Thoracic Society, 5(1), 89–96. doi:10.1513/pats.200705-063VS. Epub 2007/12/21. PubMed PMID: 18094090; PMCID: 2645305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chiba, Y., & Misawa, M. (2004). The role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness. Journal of Smooth Muscle Research, 40(4–5), 155–167. Epub 2005/01/19. PubMed PMID: 15655303.

    Article  PubMed  Google Scholar 

  28. Dekkers, B. G., Maarsingh, H., Meurs, H., & Gosens, R. (2009). Airway structural components drive airway smooth muscle remodeling in asthma. Proceedings of the American Thoracic Society, 6(8), 683–692. doi:10.1513/pats.200907-056DP. Epub 2009/12/17. PubMed PMID: 20008876.

    Article  CAS  PubMed  Google Scholar 

  29. Mahn, K., Ojo, O. O., Chadwick, G., Aaronson, P. I., Ward, J. P., & Lee, T. H. (2010). Ca(2+) homeostasis and structural and functional remodelling of airway smooth muscle in asthma. Thorax, 65(6), 547–552. doi:10.1136/thx.2009.129296. Epub 2010/06/05. PubMed PMID: 20522856.

    Article  PubMed  Google Scholar 

  30. Gao, Y. D., Zou, J. J., Zheng, J. W., Shang, M., Chen, X., Geng, S., & Yang, J. (2010). Promoting effects of IL-13 on Ca2+ release and store-operated Ca2+ entry in airway smooth muscle cells. Pulmonary Pharmacology & Therapeutics, 23(3), 182–189. doi:10.1016/j.pupt.2009.12.005. Epub 2010/01/05. PubMed PMID: 20045483.

    Article  CAS  Google Scholar 

  31. Peel, S. E., Liu, B., & Hall, I. P. (2008). ORAI and store-operated calcium influx in human airway smooth muscle cells. American Journal of Respiratory Cell and Molecular Biology, 38(6), 744–749. doi:10.1165/rcmb.2007-0395OC. Epub 2008/02/02. PubMed PMID: 18239188; PMCID: 2643203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hershenson, M. B., Garland, A., Kelleher, M. D., Zimmermann, A., Hernandez, C., & Solway, J. (1992). Hyperoxia-induced airway remodeling in immature rats. Correlation with airway responsiveness. The American Review of Respiratory Disease, 146(5 Pt 1), 1294–1300. doi:10.1164/ajrccm/146.5_Pt_1.1294. Epub 1992/11/01. PubMed PMID: 1443886.

    Article  CAS  PubMed  Google Scholar 

  33. Meuchel, L. W., Stewart, A., Smelter, D. F., Abcejo, A. J., Thompson, M. A., Zaidi, S. I., Martin, R. J., & Prakash, Y. S. (2011). Neurokinin-neurotrophin interactions in airway smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology, 301(1), L91–L98. doi:10.1152/ajplung.00320.2010. Epub 2011/04/26. PubMed PMID: 21515660; PMCID: 3129899.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bry, K., Hogmalm, A., & Backstrom, E. (2010). Mechanisms of inflammatory lung injury in the neonate: Lessons from a transgenic mouse model of bronchopulmonary dysplasia. Seminars in Perinatology, 34(3), 211–221. doi:10.1053/j.semperi.2010.02.006. Epub 2010/05/25. PubMed PMID: 20494738.

    Article  PubMed  Google Scholar 

  35. Kumar, V. H., Lakshminrusimha, S., Kishkurno, S., Paturi, B. S., Gugino, S. F., Nielsen, L., Wang, H., & Ryan, R. M. (2016). Neonatal hyperoxia increases airway reactivity and inflammation in adult mice. Pediatric Pulmonology, 51(11), 1131–1141. doi:10.1002/ppul.23430. Epub 2016/04/27. PubMed PMID: 27116319.

    Article  PubMed  Google Scholar 

  36. Wang, H., Jafri, A., Martin, R. J., Nnanabu, J., Farver, C., Prakash, Y. S., & MacFarlane, P. M. (2014). Severity of neonatal hyperoxia determines structural and functional changes in developing mouse airway. American Journal of Physiology. Lung Cellular and Molecular Physiology, 307(4), L295–L301. doi:10.1152/ajplung.00208.2013. Epub 2014/06/22. PubMed PMID: 24951774; PMCID: 4137165.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sopi, R. B., Haxhiu, M. A., Martin, R. J., Dreshaj, I. A., Kamath, S., & Zaidi, S. I. (2007). Disruption of NO-cGMP signaling by neonatal hyperoxia impairs relaxation of lung parenchyma. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293(4), L1029–L1036. doi:10.1152/ajplung.00182.2007. Epub 2007/07/31. PubMed PMID: 17660329.

    Article  CAS  PubMed  Google Scholar 

  38. Faksh, A., Britt, R. D., Jr., Vogel, E. R., Kuipers, I., Thompson, M. A., Sieck, G. C., Pabelick, C. M., Martin, R. J., & Prakash, Y. S. (2016). Effects of antenatal lipopolysaccharide and postnatal hyperoxia on airway reactivity and remodeling in a neonatal mouse model. Pediatric Research, 79(3), 391–400. doi:10.1038/pr.2015.232. Epub 2015/11/06. PubMed PMID: 26539665; PMCID: 4821779.

    Article  CAS  PubMed  Google Scholar 

  39. Velten, M., Britt, R. D., Jr., Heyob, K. M., Welty, S. E., Eiberger, B., Tipple, T. E., & Rogers, L. K. (2012). Prenatal inflammation exacerbates hyperoxia-induced functional and structural changes in adult mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 303(3), R279–R290. doi:10.1152/ajpregu.00029.2012. Epub 2012/06/22. PubMed PMID: 22718803; PMCID: 3423987.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bland, R. D., Albertine, K. H., Carlton, D. P., & MacRitchie, A. J. (2005). Inhaled nitric oxide effects on lung structure and function in chronically ventilated preterm lambs. American Journal of Respiratory and Critical Care Medicine, 172(7), 899–906. doi:10.1164/rccm.200503-384OC. PubMed PMID: 15976381; PMCID: PMC2718405.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Kallapur, S. G., & Jobe, A. H. (2006). Contribution of inflammation to lung injury and development. Archives of Disease in Childhood. Fetal and Neonatal Edition, 91(2), F132–F135. doi:10.1136/adc.2004.068544. Epub 2006/02/24. PubMed PMID: 16492951; PMCID: 2672671.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Hamad, A. M., Clayton, A., Islam, B., & Knox, A. J. (2003). Guanylyl cyclases, nitric oxide, natriuretic peptides, and airway smooth muscle function. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285(5), L973–L983. doi:10.1152/ajplung.00033.2003. Epub 2003/10/11. PubMed PMID: 14551038.

    Article  CAS  PubMed  Google Scholar 

  43. Shenberger, J. S., & Dixon, P. S. (1999). Oxygen induces S-phase growth arrest and increases p53 and p21(WAF1/CIP1) expression in human bronchial smooth-muscle cells. American Journal of Respiratory Cell and Molecular Biology, 21(3), 395–402. doi:10.1165/ajrcmb.21.3.3604. Epub 1999/08/26. PubMed PMID: 10460757.

    Article  CAS  PubMed  Google Scholar 

  44. Fayon, M., Ben-Jebria, A., Elleau, C., Carles, D., Demarquez, J. L., Savineau, J. P., & Marthan, R. (1994). Human airway smooth muscle responsiveness in neonatal lung specimens. The American Journal of Physiology, 267(2 Pt 1), L180–L186. Epub 1994/08/01. PubMed PMID: 8074241.

    CAS  PubMed  Google Scholar 

  45. Hartman, W. R., Smelter, D. F., Sathish, V., Karass, M., Kim, S., Aravamudan, B., Thompson, M. A., Amrani, Y., Pandya, H. C., Martin, R. J., Prakash, Y. S., & Pabelick, C. M. (2012). Oxygen dose responsiveness of human fetal airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 303(8), L711–L719. doi:10.1152/ajplung.00037.2012. Epub 2012/08/28. PubMed PMID: 22923637; PMCID: 3469631.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wright, D. B., Trian, T., Siddiqui, S., Pascoe, C. D., Johnson, J. R., Dekkers, B. G., Dakshinamurti, S., Bagchi, R., Burgess, J. K., Kanabar, V., & Ojo, O. O. (2013). Phenotype modulation of airway smooth muscle in asthma. Pulmonary Pharmacology & Therapeutics, 26(1), 42–49. doi:10.1016/j.pupt.2012.08.005. PubMed PMID: 22939888.

    Article  CAS  Google Scholar 

  47. Thompson, M. A., Britt, R. D., Jr., Kuipers, I., Stewart, A., Thu, J., Pandya, H. C., MacFarlane, P., Pabelick, C. M., Martin, R. J., & Prakash, Y. S. (2015). cAMP-mediated secretion of brain-derived neurotrophic factor in developing airway smooth muscle. Biochimica et Biophysica Acta, 1853(10 Pt A), 2506–2514. doi:10.1016/j.bbamcr.2015.06.008. Epub 2015/06/27. PubMed PMID: 26112987; PMCID: 4558218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Britt, R. D., Jr., Thompson, M. A., Kuipers, I., Stewart, A., Vogel, E. R., Thu, J., Martin, R. J., Pabelick, C. M., & Prakash, Y. S. (2015). Soluble guanylate cyclase modulators blunt hyperoxia effects on calcium responses of developing human airway smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology, 309(6), L537–L542. doi:10.1152/ajplung.00232.2015. Epub 2015/08/09. PubMed PMID: 26254425; PMCID: 4572415.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Bazan-Perkins, B. (2012). cGMP reduces the sarcoplasmic reticulum Ca2+ loading in airway smooth muscle cells: A putative mechanism in the regulation of Ca2+ by cGMP. Journal of Muscle Research and Cell Motility, 32(6), 375–382. doi:10.1007/s10974-011-9266-5. Epub 2011/10/15. PubMed PMID: 21997642.

    Article  CAS  PubMed  Google Scholar 

  50. Perez-Zoghbi, J. F., Bai, Y., & Sanderson, M. J. (2010). Nitric oxide induces airway smooth muscle cell relaxation by decreasing the frequency of agonist-induced Ca2+ oscillations. The Journal of General Physiology, 135(3), 247–259. doi:10.1085/jgp.200910365. Epub 2010/02/24. PubMed PMID: 20176853; PMCID: 2828908.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Gaston, B., Drazen, J. M., Jansen, A., Sugarbaker, D. A., Loscalzo, J., Richards, W., & Stamler, J. S. (1994). Relaxation of human bronchial smooth muscle by S-nitrosothiols in vitro. The Journal of Pharmacology and Experimental Therapeutics, 268(2), 978–984. Epub 1994/02/01. PubMed PMID: 7906736.

    CAS  PubMed  Google Scholar 

  52. Raffay, T. M., Martin, R. J., & Reynolds, J. D. (2012). Can nitric oxide-based therapy prevent bronchopulmonary dysplasia? Clinics in Perinatology, 39(3), 613–638. doi:10.1016/j.clp.2012.06.011. PubMed PMID: 22954273; PMCID: PMC3437658.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Chao, M. V., Rajagopal, R., & Lee, F. S. (2006). Neurotrophin signalling in health and disease. Clinical Science (London, England), 110(2), 167–173. doi:10.1042/CS20050163. Epub 2006/01/18. PubMed PMID: 16411893.

    Article  CAS  Google Scholar 

  54. Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361(1473), 1545–1564. doi:10.1098/rstb.2006.1894. Epub 2006/08/31. PubMed PMID: 16939974; PMCID: 1664664.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Skaper, S. D. (2008). The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS & Neurological Disorders Drug Targets, 7(1), 46–62. Epub 2008/02/22. PubMed PMID: 18289031.

    Article  CAS  Google Scholar 

  56. Teng, K. K., & Hempstead, B. L. (2004). Neurotrophins and their receptors: Signaling trios in complex biological systems. Cellular and Molecular Life Sciences, 61(1), 35–48. doi:10.1007/s00018-003-3099-3. Epub 2004/01/06. PubMed PMID: 14704852.

    Article  CAS  PubMed  Google Scholar 

  57. Abcejo, A. J., Sathish, V., Smelter, D. F., Aravamudan, B., Thompson, M. A., Hartman, W. R., Pabelick, C. M., & Prakash, Y. S. (2012). Brain-derived neurotrophic factor enhances calcium regulatory mechanisms in human airway smooth muscle. PLoS One, 7(8), e44343. doi:10.1371/journal.pone.0044343. Epub 2012/09/07. PubMed PMID: 22952960; PMCID: 3430656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Pandya, H. C., Snetkov, V. A., Twort, C. H., Ward, J. P., & Hirst, S. J. (2002). Oxygen regulates mitogen-stimulated proliferation of fetal human airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 283(6), L1220–L1230. doi:10.1152/ajplung.00268.2001. PubMed PMID: 12388346.

    Article  CAS  PubMed  Google Scholar 

  59. Malmstrom, K., Pelkonen, A. S., & Makela, M. J. (2013). Remodeling, inflammation and airway responsiveness in early childhood asthma. Current Opinion in Allergy and Clinical Immunology, 13(2), 203–210. doi:10.1097/ACI.0b013e32835e122c. Epub 2013/01/24. PubMed PMID: 23339936.

    Article  CAS  PubMed  Google Scholar 

  60. Burgess, J. K., Johnson, P. R., Ge, Q., Au, W. W., Poniris, M. H., McParland, B. E., King, G., Roth, M., & Black, J. L. (2003). Expression of connective tissue growth factor in asthmatic airway smooth muscle cells. American Journal of Respiratory and Critical Care Medicine, 167(1), 71–77. doi:10.1164/rccm.200205-416OC. Epub 2002/12/28. PubMed PMID: 12502478.

    Article  PubMed  Google Scholar 

  61. Johnson, P. R., Burgess, J. K., Ge, Q., Poniris, M., Boustany, S., Twigg, S. M., & Black, J. L. (2006). Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle. American Journal of Respiratory and Critical Care Medicine, 173(1), 32–41. doi:10.1164/rccm.200406-703OC. Epub 2005/09/24. PubMed PMID: 16179645.

    Article  CAS  PubMed  Google Scholar 

  62. Britt, R. D., Jr., Faksh, A., Vogel, E. R., Thompson, M. A., Chu, V., Pandya, H. C., Amrani, Y., Martin, R. J., Pabelick, C. M., & Prakash, Y. S. (2015). Vitamin D attenuates cytokine-induced remodeling in human fetal airway smooth muscle cells. Journal of Cellular Physiology, 230(6), 1189–1198. doi:10.1002/jcp.24814. Epub 2014/09/11. PubMed PMID: 25204635; PMCID: 4344421.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Vogel, E. R., Britt, R. D., Jr., Faksh, A., Kuipers, I., Pandya, H., Prakash, Y. S., Martin, R. J., & Pabelick, C. M. (2017). Moderate hyperoxia induces extracellular matrix remodeling by human fetal airway smooth muscle cells. Pediatric Research, 81(2), 376–383. doi:10.1038/pr.2016.218. PubMed PMID: 27925619.

    Article  CAS  PubMed  Google Scholar 

  64. Bhandari, V. (2010). Hyperoxia-derived lung damage in preterm infants. Seminars in Fetal & Neonatal Medicine, 15(4), 223–229. doi:10.1016/j.siny.2010.03.009. Epub 2010/05/01. PubMed PMID: 20430708; PMCID: 2910132.

    Article  Google Scholar 

  65. Chun, Y. H., Park, J. Y., Lee, H., Kim, H. S., Won, S., Joe, H. J., Chung, W. J., Yoon, J. S., Kim, H. H., Kim, J. T., & Lee, J. S. (2013). Rhinovirus-infected epithelial cells produce more IL-8 and RANTES compared with other respiratory viruses. Allergy, Asthma & Immunology Research, 5(4), 216–223. doi:10.4168/aair.2013.5.4.216. Epub 2013/07/03. PubMed PMID: 23814675; PMCID: 3695236.

    Article  CAS  Google Scholar 

  66. Aggarwal, N. R., D’Alessio, F. R., Tsushima, K., Files, D. C., Damarla, M., Sidhaye, V. K., Fraig, M. M., Polotsky, V. Y., & King, L. S. (2010). Moderate oxygen augments lipopolysaccharide-induced lung injury in mice. American Journal of Physiology. Lung Cellular and Molecular Physiology, 298(3), L371–L381. doi:10.1152/ajplung.00308.2009. Epub 2009/12/26. PubMed PMID: 20034961; PMCID: 2838673.

    Article  CAS  PubMed  Google Scholar 

  67. Denis, D., Fayon, M. J., Berger, P., Molimard, M., De Lara, M. T., Roux, E., & Marthan, R. (2001). Prolonged moderate hyperoxia induces hyperresponsiveness and airway inflammation in newborn rats. Pediatric Research, 50(4), 515–519. doi:10.1203/00006450-200110000-00015. Epub 2001/09/25. PubMed PMID: 11568296.

    Article  CAS  PubMed  Google Scholar 

  68. Belvisi, M. G., Ward, J. K., Mitchell, J. A., & Barnes, P. J. (1995). Nitric oxide as a neurotransmitter in human airways. Archives Internationales de Pharmacodynamie et de Thérapie, 329(1), 97–110. Epub 1995/01/01. PubMed PMID: 7639623.

    CAS  PubMed  Google Scholar 

  69. Joos, G. F., Germonpre, P. R., & Pauwels, R. A. (2000). Neural mechanisms in asthma. Clinical and Experimental Allergy, 30(Suppl 1), 60–65. Epub 2000/06/13. PubMed PMID: 10849478.

    Article  PubMed  Google Scholar 

  70. Davis, C. W., Gonzales, L. W., Ballard, R. A., Ballard, P. L., Guo, C., & Gow, A. J. (2008). Expression of nitric oxide synthases and endogenous NO metabolism in bronchopulmonary dysplasia. Pediatric Pulmonology, 43(7), 703–709. doi:10.1002/ppul.20848. Epub 2008/05/27. PubMed PMID: 18500734; PMCID: 4015107.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Martin, R. J., Mhanna, M. J., & Haxhiu, M. A. (2002). The role of endogenous and exogenous nitric oxide on airway function. Seminars in Perinatology, 26(6), 432–438. Epub 2003/01/23. PubMed PMID: 12537315.

    Article  PubMed  Google Scholar 

  72. Ballard, R. A., Truog, W. E., Cnaan, A., Martin, R. J., Ballard, P. L., Merrill, J. D., Walsh, M. C., Durand, D. J., Mayock, D. E., Eichenwald, E. C., Null, D. R., Hudak, M. L., Puri, A. R., Golombek, S. G., Courtney, S. E., Stewart, D. L., Welty, S. E., Phibbs, R. H., Hibbs, A. M., Luan, X., Wadlinger, S. R., Asselin, J. M., & Coburn, C. E. (2006). Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. The New England Journal of Medicine, 355(4), 343–353. doi:10.1056/NEJMoa061088. Epub 2006/07/28. PubMed PMID: 16870913.

    Article  CAS  PubMed  Google Scholar 

  73. Cole, F. S., Alleyne, C., Barks, J. D., Boyle, R. J., Carroll, J. L., Dokken, D., Edwards, W. H., Georgieff, M., Gregory, K., Johnston, M. V., Kramer, M., Mitchell, C., Neu, J., Pursley, D. M., Robinson, W., & Rowitch, D. H. (2010). NIH consensus development conference: Inhaled nitric oxide therapy for premature infants. NIH Consensus and State-of-the-Science Statements, 27(5), 1–34. Epub 2010/11/03. PubMed PMID: 21042341.

    PubMed  Google Scholar 

  74. Walsh, M. C., Hibbs, A. M., Martin, C. R., Cnaan, A., Keller, R. L., Vittinghoff, E., Martin, R. J., Truog, W. E., Ballard, P. L., Zadell, A., Wadlinger, S. R., Coburn, C. E., & Ballard, R. A. (2010). Two-year neurodevelopmental outcomes of ventilated preterm infants treated with inhaled nitric oxide. The Journal of Pediatrics, 156(4), 556–561.e1. doi:10.1016/j.jpeds.2009.10.011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Iben, S. C., Dreshaj, I. A., Farver, C. F., Haxhiu, M. A., & Martin, R. J. (2000). Role of endogenous nitric oxide in hyperoxia-induced airway hyperreactivity in maturing rats. Journal of Applied Physiology, 89(3), 1205–1212. Epub 2000/08/24. PubMed PMID: 10956370.

    CAS  PubMed  Google Scholar 

  76. Potter, C. F., Kuo, N. T., Farver, C. F., McMahon, J. T., Chang, C. H., Agani, F. H., Haxhiu, M. A., & Martin, R. J. (1999). Effects of hyperoxia on nitric oxide synthase expression, nitric oxide activity, and lung injury in rat pups. Pediatric Research, 45(1), 8–13. doi:10.1203/00006450-199901000-00003. Epub 1999/01/16. PubMed PMID: 9890602.

    Article  CAS  PubMed  Google Scholar 

  77. Rath, M., Muller, I., Kropf, P., Closs, E. I., & Munder, M. (2014). Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Frontiers in Immunology, 5, 532. doi:10.3389/fimmu.2014.00532. Epub 2014/11/12. PubMed PMID: 25386178; PMCID: 4209874.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Scott, J. A., & Grasemann, H. (2014). Arginine metabolism in asthma. Immunology and Allergy Clinics of North America, 34(4), 767–775. doi:10.1016/j.iac.2014.07.007. Epub 2014/10/06. PubMed PMID: 25282289.

    Article  PubMed  Google Scholar 

  79. Badurdeen, S., Mulongo, M., & Berkley, J. A. (2015). Arginine depletion increases susceptibility to serious infections in preterm newborns. Pediatric Research, 77(2), 290–297. doi:10.1038/pr.2014.177. Epub 2014/11/02. PubMed PMID: 25360828; PMCID: 4335378.

    CAS  PubMed  Google Scholar 

  80. Caldwell, R. B., Toque, H. A., Narayanan, S. P., & Caldwell, R. W. (2015). Arginase: An old enzyme with new tricks. Trends in Pharmacological Sciences, 36(6), 395–405. doi:10.1016/j.tips.2015.03.006. Epub 2015/05/02. PubMed PMID: 25930708; PMCID: 4461463.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Agrawal, A., Mabalirajan, U., Ahmad, T., & Ghosh, B. (2011). Emerging interface between metabolic syndrome and asthma. American Journal of Respiratory Cell and Molecular Biology, 44(3), 270–275. doi:10.1165/rcmb.2010-0141TR. Epub 2010/07/27. PubMed PMID: 20656947.

    Article  CAS  PubMed  Google Scholar 

  82. Maarsingh, H., Bossenga, B. E., Bos, I. S., Volders, H. H., Zaagsma, J., & Meurs, H. (2009). L-arginine deficiency causes airway hyperresponsiveness after the late asthmatic reaction. The European Respiratory Journal, 34(1), 191–199. doi:10.1183/09031936.00105408. Epub 2009/03/03. PubMed PMID: 19251784.

    Article  CAS  PubMed  Google Scholar 

  83. Meurs, H., Maarsingh, H., & Zaagsma, J. (2003). Arginase and asthma: Novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends in Pharmacological Sciences, 24(9), 450–455. doi:10.1016/S0165-6147(03)00227-X. Epub 2003/09/12. PubMed PMID: 12967769.

    Article  CAS  PubMed  Google Scholar 

  84. Munder, M. (2010). Role of arginase in asthma: Potential clinical applications. Expert Review of Clinical Pharmacology, 3(1), 17–23. doi:10.1586/ecp.09.53. Epub 2010/01/01. PubMed PMID: 22111529.

    Article  CAS  PubMed  Google Scholar 

  85. Zimmermann, N., & Rothenberg, M. E. (2006). The arginine-arginase balance in asthma and lung inflammation. European Journal of Pharmacology, 533(1–3), 253–262. Epub 2006/02/07. PubMed PMID: 16458291. doi:10.1016/j.ejphar.2005.12.047.

    Article  CAS  PubMed  Google Scholar 

  86. Maarsingh, H., Dekkers, B. G., Zuidhof, A. B., Bos, I. S., Menzen, M. H., Klein, T., Flik, G., Zaagsma, J., & Meurs, H. (2011). Increased arginase activity contributes to airway remodelling in chronic allergic asthma. The European Respiratory Journal, 38(2), 318–328. doi:10.1183/09031936.00057710. Epub 2011/02/12. PubMed PMID: 21310883.

    Article  CAS  PubMed  Google Scholar 

  87. Vonk, J. M., Postma, D. S., Maarsingh, H., Bruinenberg, M., Koppelman, G. H., & Meurs, H. (2010). Arginase 1 and arginase 2 variations associate with asthma, asthma severity and beta2 agonist and steroid response. Pharmacogenetics and Genomics, 20(3), 179–186. doi:10.1097/FPC.0b013e328336c7fd. Epub 2010/02/04. PubMed PMID: 20124949.

    Article  CAS  PubMed  Google Scholar 

  88. Ricciardolo, F. L., Zaagsma, J., & Meurs, H. (2005). The therapeutic potential of drugs targeting the arginase pathway in asthma. Expert Opinion on Investigational Drugs, 14(10), 1221–1231. doi:10.1517/13543784.14.10.1221. Epub 2005/09/28. PubMed PMID: 16185164.

    Article  CAS  PubMed  Google Scholar 

  89. Stenmark, K. R., & Abman, S. H. (2005). Lung vascular development: Implications for the pathogenesis of bronchopulmonary dysplasia. Annual Review of Physiology, 67, 623–661. doi:10.1146/annurev.physiol.67.040403.102229. PubMed PMID: 15709973.

    Article  CAS  PubMed  Google Scholar 

  90. Haworth, S. G., & Hislop, A. A. (2003). Lung development-the effects of chronic hypoxia. Seminars in Neonatology, 8(1), 1–8. PubMed PMID: 12667825.

    Article  PubMed  Google Scholar 

  91. Vogel, E. R., Britt, R. D., Jr., Trinidad, M. C., Faksh, A., Martin, R. J., MacFarlane, P. M., Pabelick, C. M., & Prakash, Y. S. (2015). Perinatal oxygen in the developing lung. Canadian Journal of Physiology and Pharmacology, 93(2), 119–127. doi:10.1139/cjpp-2014-0387. PubMed PMID: 25594569; PMCID: PMC4313769.

    Article  CAS  PubMed  Google Scholar 

  92. Baker, C. D., & Abman, S. H. (2015). Impaired pulmonary vascular development in bronchopulmonary dysplasia. Neonatology, 107(4), 344–351. doi:10.1159/000381129. PubMed PMID: 26044102; PMCID: PMC4469359.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Gough, A., Linden, M., Spence, D., Patterson, C. C., Halliday, H. L., & McGarvey, L. P. (2014). Impaired lung function and health status in adult survivors of bronchopulmonary dysplasia. The European Respiratory Journal, 43(3), 808–816. doi:10.1183/09031936.00039513. PubMed PMID: 23900988.

    Article  PubMed  Google Scholar 

  94. Kotch, L. E., Iyer, N. V., Laughner, E., & Semenza, G. L. (1999). Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Developmental Biology, 209(2), 254–267. doi:10.1006/dbio.1999.9253. PubMed PMID: 10328919.

    Article  CAS  PubMed  Google Scholar 

  95. Compernolle, V., Brusselmans, K., Acker, T., Hoet, P., Tjwa, M., Beck, H., Plaisance, S., Dor, Y., Keshet, E., Lupu, F., Nemery, B., Dewerchin, M., Van Veldhoven, P., Plate, K., Moons, L., Collen, D., & Carmeliet, P. (2002). Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nature Medicine, 8(7), 702–710. doi:10.1038/nm721. PubMed PMID: 12053176.

    CAS  PubMed  Google Scholar 

  96. Hosford, G. E., & Olson, D. M. (2003). Effects of hyperoxia on VEGF, its receptors, and HIF-2alpha in the newborn rat lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285(1), L161–L168. doi:10.1152/ajplung.00285.2002. PubMed PMID: 12626331.

    Article  CAS  PubMed  Google Scholar 

  97. Tibboel, J., Groenman, F. A., Selvaratnam, J., Wang, J., Tseu, I., Huang, Z., Caniggia, I., Luo, D., van Tuyl, M., Ackerley, C., de Jongste, J. C., Tibboel, D., & Post, M. (2015). Hypoxia-inducible factor-1 stimulates postnatal lung development but does not prevent O2-induced alveolar injury. American Journal of Respiratory Cell and Molecular Biology, 52(4), 448–458. doi:10.1165/rcmb.2014-0037OC. PubMed PMID: 25180700.

    Article  CAS  PubMed  Google Scholar 

  98. Vadivel, A., Alphonse, R. S., Etches, N., van Haaften, T., Collins, J. J., O’Reilly, M., Eaton, F., & Thebaud, B. (2014). Hypoxia-inducible factors promote alveolar development and regeneration. American Journal of Respiratory Cell and Molecular Biology, 50(1), 96–105. doi:10.1165/rcmb.2012-0250OC. PubMed PMID: 23962064.

    CAS  PubMed  Google Scholar 

  99. Jakkula, M., Le Cras, T. D., Gebb, S., Hirth, K. P., Tuder, R. M., Voelkel, N. F., & Abman, S. H. (2000). Inhibition of angiogenesis decreases alveolarization in the developing rat lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 279(3), L600–L607. PubMed PMID: 10956636.

    CAS  PubMed  Google Scholar 

  100. Maniscalco, W. M., Watkins, R. H., Pryhuber, G. S., Bhatt, A., Shea, C., & Huyck, H. (2002). Angiogenic factors and alveolar vasculature: Development and alterations by injury in very premature baboons. American Journal of Physiology. Lung Cellular and Molecular Physiology, 282(4), L811–L823. doi:10.1152/ajplung.00325.2001. PubMed PMID: 11880308.

    Article  CAS  PubMed  Google Scholar 

  101. Meller, S., & Bhandari, V. (2012). VEGF levels in humans and animal models with RDS and BPD: Temporal relationships. Experimental Lung Research, 38(4), 192–203. doi:10.3109/01902148.2012.663454. PubMed PMID: 22394267; PMCID: PMC3705912.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Le Cras, T. D., Markham, N. E., Tuder, R. M., Voelkel, N. F., & Abman, S. H. (2002). Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. American Journal of Physiology. Lung Cellular and Molecular Physiology, 283(3), L555–L562. doi:10.1152/ajplung.00408.2001. PubMed PMID: 12169575.

    Article  PubMed  Google Scholar 

  103. McGrath-Morrow, S. A., Cho, C., Cho, C., Zhen, L., Hicklin, D. J., & Tuder, R. M. (2005). Vascular endothelial growth factor receptor 2 blockade disrupts postnatal lung development. American Journal of Respiratory Cell and Molecular Biology, 32(5), 420–427. doi:10.1165/rcmb.2004-0287OC. PubMed PMID: 15722510.

    Article  CAS  PubMed  Google Scholar 

  104. Bhandari, V., Choo-Wing, R., Lee, C. G., Yusuf, K., Nedrelow, J. H., Ambalavanan, N., Malkus, H., Homer, R. J., & Elias, J. A. (2008). Developmental regulation of NO-mediated VEGF-induced effects in the lung. American Journal of Respiratory Cell and Molecular Biology, 39(4), 420–430. doi:10.1165/rcmb.2007-0024OC. PubMed PMID: 18441284; PMCID: PMC2551703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Abman, S. H. (2010). Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease. Advances in Experimental Medicine and Biology, 661, 323–335. doi:10.1007/978-1-60761-500-2_21. PubMed PMID: 20204740.

    Article  CAS  PubMed  Google Scholar 

  106. Seedorf, G., Metoxen, A. J., Rock, R., Markham, N., Ryan, S., Vu, T., & Abman, S. H. (2016). Hepatocyte growth factor as a downstream mediator of vascular endothelial growth factor-dependent preservation of growth in the developing lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 310(11), L1098–L1110. doi:10.1152/ajplung.00423.2015. PubMed PMID: 27036872; PMCID: PMC4935471.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Syed, M. A., Choo-Wing, R., Homer, R. J., & Bhandari, V. (2016). Role of nitric oxide isoforms in vascular and alveolar development and lung injury in vascular endothelial growth factor overexpressing neonatal mice lungs. PLoS One, 11(1), e0147588. doi:10.1371/journal.pone.0147588. PubMed PMID: 26799210; PMCID: PMC4723240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Li, W., & Kong, A. N. (2009). Molecular mechanisms of Nrf2-mediated antioxidant response. Molecular Carcinogenesis, 48(2), 91–104. doi:10.1002/mc.20465. PubMed PMID: 18618599; PMCID: PMC2631094.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Cho, H. Y., van Houten, B., Wang, X., Miller-DeGraff, L., Fostel, J., Gladwell, W., Perrow, L., Panduri, V., Kobzik, L., Yamamoto, M., Bell, D. A., & Kleeberger, S. R. (2012). Targeted deletion of nrf2 impairs lung development and oxidant injury in neonatal mice. Antioxidants & Redox Signaling, 17(8), 1066–1082. doi:10.1089/ars.2011.4288. PubMed PMID: 22400915; PMCID: PMC3423869.

    Article  CAS  Google Scholar 

  110. McGrath-Morrow, S., Lauer, T., Yee, M., Neptune, E., Podowski, M., Thimmulappa, R. K., O’Reilly, M., & Biswal, S. (2009). Nrf2 increases survival and attenuates alveolar growth inhibition in neonatal mice exposed to hyperoxia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 296(4), L565–L573. doi:10.1152/ajplung.90487.2008. PubMed PMID: 19151108; PMCID: PMC2670765.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Locy, M. L., Rogers, L. K., Prigge, J. R., Schmidt, E. E., Arner, E. S., & Tipple, T. E. (2012). Thioredoxin reductase inhibition elicits Nrf2-mediated responses in Clara cells: Implications for oxidant-induced lung injury. Antioxidants & Redox Signaling, 17(10), 1407–1416. doi:10.1089/ars.2011.4377. PubMed PMID: 22607006; PMCID: PMC3437047.

    Article  CAS  Google Scholar 

  112. Britt, R. D., Jr., Velten, M., Locy, M. L., Rogers, L. K., & Tipple, T. E. (2014). The thioredoxin reductase-1 inhibitor aurothioglucose attenuates lung injury and improves survival in a murine model of acute respiratory distress syndrome. Antioxidants & Redox Signaling, 20(17), 2681–2691. doi:10.1089/ars.2013.5332. PubMed PMID: 24295151; PMCID: PMC4026403.

    Article  CAS  Google Scholar 

  113. Li, Q., Wall, S. B., Ren, C., Velten, M., Hill, C. L., Locy, M. L., Rogers, L. K., & Tipple, T. E. (2016). Thioredoxin reductase inhibition attenuates neonatal hyperoxic lung injury and enhances Nrf2 activation. American Journal of Respiratory Cell and Molecular Biology, 55(3), 419–428. doi:10.1165/rcmb.2015-0228OC. PubMed PMID: 27089175.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Wagenaar, G. T., Hiemstra, P. S., & Gosens, R. (2015). Therapeutic potential of soluble guanylate cyclase modulators in neonatal chronic lung disease. American Journal of Physiology. Lung Cellular and Molecular Physiology, 309(10), L1037–L1040. doi:10.1152/ajplung.00333.2015. PubMed PMID: 26432873.

    CAS  PubMed  Google Scholar 

  115. Francis, S. H., Busch, J. L., Corbin, J. D., & Sibley, D.(2010). cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacological Reviews, 62(3), 525–563. doi:10.1124/pr.110.002907. PubMed PMID: 20716671; PMCID: PMC2964902.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Balasubramaniam, V., Maxey, A. M., Fouty, B. W., & Abman, S. H. (2006). Nitric oxide augments fetal pulmonary artery endothelial cell angiogenesis in vitro. American Journal of Physiology. Lung Cellular and Molecular Physiology, 290(6), L1111–L1116. doi:10.1152/ajplung.00431.2005. PubMed PMID: 16399787.

    Article  CAS  PubMed  Google Scholar 

  117. Bachiller, P. R., Cornog, K. H., Kato, R., Buys, E. S., & Roberts, J. D., Jr. (2013). Soluble guanylate cyclase modulates alveolarization in the newborn lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 305(8), L569–L581. doi:10.1152/ajplung.00401.2012. PubMed PMID: 23934926; PMCID: PMC3798773.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Chester, M., Seedorf, G., Tourneux, P., Gien, J., Tseng, N., Grover, T., Wright, J., Stasch, J. P., & Abman, S. H. (2011). Cinaciguat, a soluble guanylate cyclase activator, augments cGMP after oxidative stress and causes pulmonary vasodilation in neonatal pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 301(5), L755–L764. doi:10.1152/ajplung.00138.2010. PubMed PMID: 21856817; PMCID: PMC3213988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Park, H. S., Park, J. W., Kim, H. J., Choi, C. W., Lee, H. J., Kim, B. I., & Chun, Y. S. (2013). Sildenafil alleviates bronchopulmonary dysplasia in neonatal rats by activating the hypoxia-inducible factor signaling pathway. American Journal of Respiratory Cell and Molecular Biology, 48(1), 105–113. doi:10.1165/rcmb.2012-0043OC. PubMed PMID: 23065129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Brahmajothi, M. V., Tinch, B. T., Wempe, M. F., Endou, H., & Auten, R. L. (2014). Hyperoxia inhibits nitric oxide treatment effects in alveolar epithelial cells via effects on L-type amino acid transporter-1. Antioxidants & Redox Signaling, 21(13), 1823–1836. doi:10.1089/ars.2013.5664. PubMed PMID: 25089378; PMCID: PMC4202911.

    Article  CAS  Google Scholar 

  121. Johnston, L. C., Gonzales, L. W., Lightfoot, R. T., Guttentag, S. H., & Ischiropoulos, H. (2010). Opposing regulation of human alveolar type II cell differentiation by nitric oxide and hyperoxia. Pediatric Research, 67(5), 521–525. doi:10.1203/PDR.0b013e3181d4f20f. PubMed PMID: 20098340; PMCID: PMC3066065.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. McCurnin, D. C., Pierce, R. A., Chang, L. Y., Gibson, L. L., Osborne-Lawrence, S., Yoder, B. A., Kerecman, J. D., Albertine, K. H., Winter, V. T., Coalson, J. J., Crapo, J. D., Grubb, P. H., & Shaul, P. W. (2005). Inhaled NO improves early pulmonary function and modifies lung growth and elastin deposition in a baboon model of neonatal chronic lung disease. American Journal of Physiology. Lung Cellular and Molecular Physiology, 288(3), L450–L459. doi:10.1152/ajplung.00347.2004. PubMed PMID: 15591412.

    Article  CAS  PubMed  Google Scholar 

  123. ter Horst, S. A., Walther, F. J., Poorthuis, B. J., Hiemstra, P. S., & Wagenaar, G. T. (2007). Inhaled nitric oxide attenuates pulmonary inflammation and fibrin deposition and prolongs survival in neonatal hyperoxic lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293(1), L35–L44. doi:10.1152/ajplung.00381.2006. PubMed PMID: 17384081.

    Article  CAS  PubMed  Google Scholar 

  124. Rose, M. J., Stenger, M. R., Joshi, M. S., Welty, S. E., Bauer, J. A., & Nelin, L. D. (2010). Inhaled nitric oxide decreases leukocyte trafficking in the neonatal mouse lung during exposure to >95% oxygen. Pediatric Research, 67(3), 244–249. doi:10.1203/PDR.0b013e3181ca0d93. PubMed PMID: 19915514; PMCID: PMC2829761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Duong-Quy, S., Hua-Huy, T., Pham, H., Tang, X., Mercier, J. C., Baud, O., & Dinh-Xuan, A. T. (2014). Early inhaled nitric oxide at high dose enhances rat lung development after birth. Nitric Oxide, 38, 8–16. doi:10.1016/j.niox.2014.02.004. PubMed PMID: 24566008.

    Article  CAS  PubMed  Google Scholar 

  126. Kumar, P., Committee on Fetus and Newborn, & American Academy of Pediatrics. (2014). Use of inhaled nitric oxide in preterm infants. Pediatrics, 133(1), 164–170. doi:10.1542/peds.2013-3444. PubMed PMID: 24379225.

    Article  PubMed  Google Scholar 

  127. Stasch, J. P., Pacher, P., & Evgenov, O. V. (2011). Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation, 123(20), 2263–2273. doi:10.1161/CIRCULATIONAHA.110.981738. PubMed PMID: 21606405; PMCID: PMC3103045.

    Article  PubMed Central  PubMed  Google Scholar 

  128. Chester, M., Tourneux, P., Seedorf, G., Grover, T. R., Gien, J., & Abman, S. H. (2009). Cinaciguat, a soluble guanylate cyclase activator, causes potent and sustained pulmonary vasodilation in the ovine fetus. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297(2), L318–L325. doi:10.1152/ajplung.00062.2009. PubMed PMID: 19465519; PMCID: PMC2742799.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Weissmann, N., Lobo, B., Pichl, A., Parajuli, N., Seimetz, M., Puig-Pey, R., Ferrer, E., Peinado, V. I., Dominguez-Fandos, D., Fysikopoulos, A., Stasch, J. P., Ghofrani, H. A., Coll-Bonfill, N., Frey, R., Schermuly, R. T., Garcia-Lucio, J., Blanco, I., Bednorz, M., Tura-Ceide, O., Tadele, E., Brandes, R. P., Grimminger, J., Klepetko, W., Jaksch, P., Rodriguez-Roisin, R., Seeger, W., Grimminger, F., & Barbera, J. A. (2014). Stimulation of soluble guanylate cyclase prevents cigarette smoke-induced pulmonary hypertension and emphysema. American Journal of Respiratory and Critical Care Medicine, 189(11), 1359–1373. doi:10.1164/rccm.201311-2037OC. PubMed PMID: 24738736.

    Article  CAS  PubMed  Google Scholar 

  130. Wang, P., Zhang, G., Wondimu, T., Ross, B., & Wang, R. (2011). Hydrogen sulfide and asthma. Experimental Physiology, 96(9), 847–852. doi:10.1113/expphysiol.2011.057448. PubMed PMID: 21666034.

    Article  CAS  PubMed  Google Scholar 

  131. Madurga, A., Golec, A., Pozarska, A., Ishii, I., Mizikova, I., Nardiello, C., Vadasz, I., Herold, S., Mayer, K., Reichenberger, F., Fehrenbach, H., Seeger, W., & Morty, R. E. (2015). The H2S-generating enzymes cystathionine beta-synthase and cystathionine gamma-lyase play a role in vascular development during normal lung alveolarization. American Journal of Physiology. Lung Cellular and Molecular Physiology, 309(7), L710–L724. doi:10.1152/ajplung.00134.2015. PubMed PMID: 26232299.

    Article  CAS  PubMed  Google Scholar 

  132. Madurga, A., Mizikova, I., Ruiz-Camp, J., Vadasz, I., Herold, S., Mayer, K., Fehrenbach, H., Seeger, W., & Morty, R. E. (2014). Systemic hydrogen sulfide administration partially restores normal alveolarization in an experimental animal model of bronchopulmonary dysplasia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 306(7), L684–L697. doi:10.1152/ajplung.00361.2013. PubMed PMID: 24508731.

    Article  CAS  PubMed  Google Scholar 

  133. Vadivel, A., Alphonse, R. S., Ionescu, L., Machado, D. S., O’Reilly, M., Eaton, F., Haromy, A., Michelakis, E. D., & Thebaud, B. (2014). Exogenous hydrogen sulfide (H2S) protects alveolar growth in experimental O2-induced neonatal lung injury. PLoS One, 9(3), e90965. doi:10.1371/journal.pone.0090965. PubMed PMID: 24603989; PMCID: PMC3946270.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Choi, A. M., & Alam, J. (1996). Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. American Journal of Respiratory Cell and Molecular Biology, 15(1), 9–19. doi:10.1165/ajrcmb.15.1.8679227. PubMed PMID: 8679227.

    Article  CAS  PubMed  Google Scholar 

  135. Morse, D., Lin, L., Choi, A. M., & Ryter, S. W. (2009). Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease. Free Radical Biology & Medicine, 47(1), 1–12. doi:10.1016/j.freeradbiomed.2009.04.007. PubMed PMID: 19362144; PMCID: PMC3078523.

    Article  CAS  Google Scholar 

  136. Ryter, S. W., & Choi, A. M. (2016). Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Translational Research, 167(1), 7–34. doi:10.1016/j.trsl.2015.06.011. PubMed PMID: 26166253; PMCID: PMC4857893.

    Article  CAS  PubMed  Google Scholar 

  137. Dennery, P. A., Lee, C. S., Ford, B. S., Weng, Y. H., Yang, G., & Rodgers, P. A. (2003). Developmental expression of heme oxygenase in the rat lung. Pediatric Research, 53(1), 42–47. doi:10.1203/00006450-200301000-00010. PubMed PMID: 12508080.

    Article  CAS  PubMed  Google Scholar 

  138. Zhuang, T., Zhang, M., Zhang, H., Dennery, P. A., & Lin, Q. S. (2010). Disrupted postnatal lung development in heme oxygenase-1 deficient mice. Respiratory Research, 11, 142. doi:10.1186/1465-9921-11-142. PubMed PMID: 20932343; PMCID: PMC2964616.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Yang, G., Biswasa, C., Lin, Q. S., La, P., Namba, F., Zhuang, T., Muthu, M., & Dennery, P. A. (2013). Heme oxygenase-1 regulates postnatal lung repair after hyperoxia: Role of beta-catenin/hnRNPK signaling. Redox Biology, 1, 234–243. doi:10.1016/j.redox.2013.01.013. PubMed PMID: 24024157; PMCID: PMC3757689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Fernandez-Gonzalez, A., Alex Mitsialis, S., Liu, X., & Kourembanas, S. (2012). Vasculoprotective effects of heme oxygenase-1 in a murine model of hyperoxia-induced bronchopulmonary dysplasia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 302(8), L775–L784. doi:10.1152/ajplung.00196.2011. PubMed PMID: 22287607; PMCID: PMC3331581.

    Article  CAS  PubMed  Google Scholar 

  141. Anyanwu, A. C., Bentley, J. K., Popova, A. P., Malas, O., Alghanem, H., Goldsmith, A. M., Hershenson, M. B., & Pinsky, D. J. (2014). Suppression of inflammatory cell trafficking and alveolar simplification by the heme oxygenase-1 product carbon monoxide. American Journal of Physiology. Lung Cellular and Molecular Physiology, 306(8), L749–L763. doi:10.1152/ajplung.00236.2013. PubMed PMID: 24532288; PMCID: PMC3989725.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Tipple, T. E. (2014). The thioredoxin system in neonatal lung disease. Antioxidants & Redox Signaling, 21(13), 1916–1925. doi:10.1089/ars.2013.5782. PubMed PMID: 24328910; PMCID: PMC4202924.

    Article  CAS  Google Scholar 

  143. Samb, A., Taille, C., Almolki, A., Megret, J., Staddon, J. M., Aubier, M., & Boczkowski, J. (2002). Heme oxygenase modulates oxidant-signaled airway smooth muscle contractility: Role of bilirubin. American Journal of Physiology. Lung Cellular and Molecular Physiology, 283(3), L596–L603. doi:10.1152/ajplung.00446.2001. PubMed PMID: 12169579.

    Article  CAS  PubMed  Google Scholar 

  144. Taille, C., El-Benna, J., Lanone, S., Boczkowski, J., & Motterlini, R. (2005). Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. The Journal of Biological Chemistry, 280(27), 25350–25360. doi:10.1074/jbc.M503512200. PubMed PMID: 15863496.

    Article  CAS  PubMed  Google Scholar 

  145. Hoidal, J. R., Brar, S. S., Sturrock, A. B., Sanders, K. A., Dinger, B., Fidone, S., & Kennedy, T. P. (2003). The role of endogenous NADPH oxidases in airway and pulmonary vascular smooth muscle function. Antioxidants & Redox Signaling, 5(6), 751–758. doi:10.1089/152308603770380052. PubMed PMID: 14588148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. Pabelick M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pabelick, C.M., Thompson, M.A., Britt, R.D. (2017). Effects of Hyperoxia on the Developing Airway and Pulmonary Vasculature. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_11

Download citation

Publish with us

Policies and ethics