Skip to main content

Adventitial Fibroblast Nox4 Expression and ROS Signaling in Pulmonary Arterial Hypertension

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 967))

Abstract

Pulmonary arterial hypertension (PAH) is a progressive disease arising from remodeling and narrowing of pulmonary arteries (PA) resulting in high pulmonary arterial blood pressure and ultimately right ventricular failure. Elevated production of reactive oxygen species (ROS) by NADPH oxidase 4 (Nox4), a constitutively active enzyme, has been associated with oxygen sensing, vasomotor control, cellular proliferation, differentiation, migration, apoptosis, senescence, fibrosis, and angiogenesis. Further, elevated expression of Nox4 has been reported in a number of cardiovascular diseases, including atherosclerosis, hypertension, cardiac failure, ischemic stroke, and PAH. However, the cellular location of Nox4 and its contribution to aberrant vascular remodeling in PAH remains poorly understood. The goal of this review is to summarize the recent literature on the enzymatic regulation of Nox4 in the production of ROS in PAH. In the vascular wall, Nox4 is present in fibroblasts, a primary cell of the adventitia, and matches the adventitial location of ROS production in PAH. Further, in adventitial fibroblasts, Nox4 overexpression stimulates migration and proliferation as well as matrix gene expression. Collectively, reports indicate that Nox4 contributes to altered fibroblast behavior, ROS production leading to hypertensive vascular remodeling and the development of PAH. Finally, we address the functional significance of Nox4 in fibroblasts, and also suggest an “outside in” (adventitial) process of vascular remodeling that is mediated by Nox4, which although has physiological roles in the intimal layer (i.e., endothelium), may also have pathologic importance in the adventitial layer of the vascular wall through signaling in fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prewitt, A. R., Ghose, S., Frump, A. L., et al. (2015). Heterozygous null bone morphogenetic protein receptor type 2 mutations promote SRC kinase-dependent caveolar trafficking defects and endothelial dysfunction in pulmonary arterial hypertension. The Journal of Biological Chemistry, 290, 960–971.

    Article  CAS  PubMed  Google Scholar 

  2. Houssaini, A., Abid, S., Mouraret, N., et al. (2013). Rapamycin reverses pulmonary artery smooth muscle cell proliferation in pulmonary hypertension. American Journal of Respiratory Cell and Molecular Biology, 48, 568–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stenmark, K. R., Fagan, K. A., & Frid, M. G. (2006). Hypoxia-induced pulmonary vascular remodeling: Cellular and molecular mechanisms. Circulation Research, 99, 675–691.

    Article  CAS  PubMed  Google Scholar 

  4. Rabinovitch, M., Gamble, W., Nadas, A. S., et al. (1979). Rat pulmonary circulation after chronic hypoxia: Hemodynamic and structural features. The American Journal of Physiology, 236, H818–H827.

    CAS  PubMed  Google Scholar 

  5. Hassoun, P. M., Mouthon, L., Barbera, J. A., et al. (2009). Inflammation, growth factors, and pulmonary vascular remodeling. Journal of the American College of Cardiology, 54, S10–S19.

    Article  CAS  PubMed  Google Scholar 

  6. Benza, R. L., Miller, D. P., Barst, R. J., et al. (2012). An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL registry. Chest, 142, 448–456.

    Article  PubMed  Google Scholar 

  7. Yen, C. H., Leu, S., Lin, Y. C., et al. (2010). Sildenafil limits Monocrotaline-induced pulmonary hypertension in rats through suppression of pulmonary vascular remodeling. Journal of Cardiovascular Pharmacology, 55, 574–584.

    Article  CAS  PubMed  Google Scholar 

  8. Frazziano, G., Champion, H. C., & Pagano, P. J. (2012). NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone. American Journal of Physiology. Heart and Circulatory Physiology, 302, H2166–H2177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bowers, R., Cool, C., Murphy, R. C., et al. (2004). Oxidative stress in severe pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 169, 764–769.

    Article  PubMed  Google Scholar 

  10. Liu, J. Q., Zelko, I. N., Erbynn, E. M., et al. (2006). Hypoxic pulmonary hypertension: Role of superoxide and nadph oxidase (gp91phox). American Journal of Physiology. Lung Cellular and Molecular Physiology, 290, L2–10.

    Article  CAS  PubMed  Google Scholar 

  11. Dennis, K. E., Aschner, J. L., Milatovic, D., et al. (2009). Nadph oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297, L596–L607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Masri, F. A., Comhair, S. A., Dostanic-Larson, I., et al. (2008). Deficiency of lung antioxidants in idiopathic pulmonary arterial hypertension. Clinical and Translational Science, 1, 99–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Archer, S. L., Marsboom, G., Kim, G. H., et al. (2010). Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: A basis for excessive cell proliferation and a new therapeutic target. Circulation, 121, 2661–2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lassegue, B., & Griendling, K. K. (2010). Nadph oxidases: Functions and pathologies in the vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 653–661.

    Article  CAS  PubMed  Google Scholar 

  15. Thannickal, V. J., & Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. American Journal of Physiology. Lung Cellular and Molecular Physiology, 279, L1005–L1028.

    CAS  PubMed  Google Scholar 

  16. Nisimoto, Y., Jackson, H. M., Ogawa, H., et al. (2010). Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain. Biochemistry, 49, 2433–2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, F., Haigh, S., Barman, S., et al. (2012). From form to function: The role of Nox4 in the cardiovascular system. Frontiers in Physiology, 3, 1–12.

    Google Scholar 

  18. Dikalova, A., Clempus, R., Lassegue, B., et al. (2005). Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation, 112, 2668–2676.

    Article  CAS  PubMed  Google Scholar 

  19. Iwata, K., Ikami, K., Matsuno, K., et al. (2014). Deficiency of Nox1/nicotinamide adenine dinucleotide phosphate, reduced form oxidase leads to pulmonary vascular remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 110–119.

    Google Scholar 

  20. Mittal, M., Roth, M., Konig, P., et al. (2007). Hypoxia-dependent regulation of nonphagocytic nadph oxidase subunit Nox4 in the pulmonary vasculature. Circulation Research, 101, 258–267.

    Google Scholar 

  21. Sorescu, D., Weiss, D., Lassegue, B., et al. (2002). Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation, 105, 1429–1435.

    Google Scholar 

  22. Barman, S. A., Chen, F., Su, Y., et al. (2014). NADPH oxidase 4 is expressed in pulmonary artery adventitia and contributes to hypertensive vascular remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 1704–1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ambasta, R. K., Kumar, P., Griendling, K. K., et al. (2004). Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. The Journal of Biological Chemistry, 279, 45935–45941.

    Article  CAS  PubMed  Google Scholar 

  24. Lambeth, J. D., Kawahara, T., & Diebold, B. (2007). Regulation of Nox and Duox enzymatic activity and expression. Free Radical Biology & Medicine, 43, 319–331.

    Article  CAS  Google Scholar 

  25. Lu, X., Murphy, T. C., Nanes, M. S., et al. (2010). PPAR{gamma} regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-{kappa}B. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299, L559–L566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sturrock, A., Huecksteadt, T. P., Norman, K., et al. (2007). Nox4 mediates TGF-beta1-induced retinoblastoma protein phosphorylation, proliferation, and hypertrophy in human airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292, L1543–L1555.

    Article  CAS  PubMed  Google Scholar 

  27. Ismail, S., Sturrock, A., Wu, P., et al. (2009). Nox4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: The role of autocrine production of transforming growth factor-{beta}1 and insulin-like growth factor binding protein-3. American Journal of Physiology. Lung Cellular and Molecular Physiology, 296, L489–L499.

    Article  CAS  PubMed  Google Scholar 

  28. Nisbet, R. E., Graves, A. S., Kleinhenz, D. J., et al. (2009). The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. American Journal of Respiratory Cell and Molecular Biology, 40, 601–60929.

    Article  CAS  PubMed  Google Scholar 

  29. Sturrock, A., Cahill, B., Norman, K., et al. (2006). Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 290, L661–L673.

    Article  CAS  PubMed  Google Scholar 

  30. Li, S., Tabar, S. S., Malec, V., et al. (2008). NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts. Antioxidants & Redox Signaling, 10, 1687–1698.

    Article  CAS  Google Scholar 

  31. Dorfmuller, P., Chaumais, M. C., Giannakouli, M., et al. (2011). Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension. Respiratory Research, 12, 119–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sanders, K. A., & Hoidal, J. R. (2007). The NOX on pulmonary hypertension. Circulation Research, 101, 224–226.

    Article  CAS  PubMed  Google Scholar 

  33. Griffith, B., Pendyala, S., Hecker, L., et al. (2009). NOX enzymes and pulmonary disease. Antioxidants & Redox Signaling, 11, 2505–2516.

    Article  CAS  Google Scholar 

  34. Tuder, R. M., Chacon, M., Alger, L., et al. (2001). Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: Evidence for a process of disordered angiogenesis. The Journal of Pathology, 195, 367–374.

    Article  CAS  PubMed  Google Scholar 

  35. Jonigk, D., Golpon, H., Bockmeyer, C. L., et al. (2011). Plexiform lesions in pulmonary arterial hypertension composition, architecture, and microenvironment. The American Journal of Pathology, 179, 167–179.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bauer, N. R., Moore, T. M., & McMurtry, I. F. (2007). Rodent models of PAH: Are we there yet? American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L580–L582.

    Article  CAS  PubMed  Google Scholar 

  37. Ago, T., Kitazono, T., Ooboshi, H., et al. (2004). Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation, 109, 227–233.

    Article  CAS  PubMed  Google Scholar 

  38. Schroder, K., Zhang, M., Benkhoff, S., et al. (2012). Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circulation Research, 110, 1217–1225.

    Article  PubMed  Google Scholar 

  39. Bedard, K., & Krause, K. H. (2007). The NOX Family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87, 245–313.

    Article  CAS  PubMed  Google Scholar 

  40. Martyn, K. D., Frederick, L. M., von Loehneysen, K., et al. (2006). Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cellular Signalling, 18, 69–82.

    Article  CAS  PubMed  Google Scholar 

  41. Kawahara, T., Ritsick, D., Cheng, G., et al. (2005). Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. The Journal of Biological Chemistry, 280, 31859–31869.

    Article  CAS  PubMed  Google Scholar 

  42. Brandes, R. P., Takac, I., & Schroder, K. (2011). No superoxide--no stress?: Nox4, the good NADPH oxidase! Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1255–1257.

    Article  CAS  PubMed  Google Scholar 

  43. Serrander, L., Cartier, L., Bedard, K., et al. (2007). NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. The Biochemical Journal, 406, 105–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takac, I., Schroder, K., Zhang, L., et al. (2011). The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. The Journal of Biological Chemistry, 286, 13304–13313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Coflesky, J. T., Jones, R. C., Reid, L. M., et al. (1987). Mechanical properties and structure of isolated pulmonary arteries remodeled by chronic hyperoxia. The American Review of Respiratory Disease, 136, 388–394.

    Article  CAS  PubMed  Google Scholar 

  46. Sanz, J., Kariisa, M., Dellegrottaglie, S., et al. (2009). Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC. Cardiovascular Imaging, 2, 286–295.

    Article  PubMed  Google Scholar 

  47. Hecker, L., Vittal, R., Jones, T., et al. (2009). Nadph oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nature Medicine, 15, 1077–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amara, N., Goven, D., Prost, F., et al. (2010). NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGF-β1-induced fibroblast differentiation into myofibroblasts. Thorax, 65, 733–738.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jarman, E. R., Khambata, V. S., Cope, C., et al. (2014). An inhibitor of NADPH oxidase-4 attenuates established pulmonary fibrosis in a rodent disease model. American Journal of Respiratory Cell and Molecular Biology, 50, 158–169.

    PubMed  Google Scholar 

  50. Liu, R.-M., Choi, J., Wu, J.-H., et al. (2010). Oxidative modification of nuclear mitogen-activated protein kinase phosphatase 1 is involved in transforming growth factor b1-induced expression of plasminogen activator inhibitor 1 in fibroblasts. The Journal of Biological Chemistry, 285, 16239–16247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, M., Riddle, S. R., Frid, M. G., et al. (2011). Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. Journal of Immunology, 187, 2711–2722.

    Article  CAS  Google Scholar 

  52. Maiellaro, K., & Taylor, W. R. (2007). The role of the adventitia in vascular inflammation. Cardiovascular Research, 75, 640–6449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Capers, Q., Alexander, R. W., Pingping, L., et al. (1997). Monocyte Chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension, 6, 1397–1402.

    Article  Google Scholar 

  54. Bucala, R., Spiegel, L. A., Chesney, J., et al. (1994). Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Molecular Medicine, 1, 71–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Reilkoff, R. A., Bucala, R., & Herzog, E. L. (2011). Fibrocytes: Emerging effector cells in chronic inflammation. Nature Reviews. Immunology, 11, 427–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Quan, T. E., Cowper, S., Wu, S. P., et al. (2004). Circulating fibrocytes: Collagen-secreting cells of the peripheral blood. The International Journal of Biochemistry & Cell Biology, 36, 598–606.

    Article  CAS  Google Scholar 

  57. Phillips, R. J., Burdick, M. D., Hong, K., et al. (2004). Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. Journal of Clinical Investigation, 114, 438–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stenmark, K. R., Davie, N., Frid, M., et al. (2006). Role of the adventitia in pulmonary vascular remodeling. Physiology, 21, 134–145.

    Article  CAS  PubMed  Google Scholar 

  59. Rey, F. E., & Pagano, P. J. (2002). The reactive adventitia: Fibroblast oxidase in vascular function. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 1962–1971.

    Article  CAS  PubMed  Google Scholar 

  60. Griendling, K., Sorescu, D., & Ushio-Fukai, M. (2000). NAD(P)H oxidase: Role in cardiovascular biology and disease. Circulation Research, 86, 494–501.

    Article  CAS  PubMed  Google Scholar 

  61. Lassègue, B., & Clempus, R. (2003). Vascular NAD(P)H oxidases: Specific features, expression, and regulation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 285, R277–R297.

    Article  PubMed  Google Scholar 

  62. Li, J.-M., & Shah, A. (2002). Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. The Journal of Biological Chemistry, 277, 19952–19960.

    Article  CAS  PubMed  Google Scholar 

  63. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.

    Article  CAS  PubMed  Google Scholar 

  64. Thannickal, V. J., Aldweib, K. D., & Fanburg, B. L. (1998). Tyrosine phosphorylation regulates H2O2 production in lung fibroblasts stimulated by transforming growth factor beta 1. The Journal of Biological Chemistry, 273, 23611–23615.

    Google Scholar 

  65. Cucoranu, I., Clempus, R., Dikalova, A., et al. (2005). Nad(p)h oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circulation Research, 97, 900–907.

    Article  CAS  PubMed  Google Scholar 

  66. Sartore, S., Chiavegato, A., Faggin, E., et al. (2001). (2001) contribution of adventitial fibroblasts to neointima formation and vascular remodeling: From innocent bystander to active participant. Circulation Research, 89, 1111–1121.

    Article  CAS  PubMed  Google Scholar 

  67. Majesky, M. W., Dong, X. R., Hoglund, V., et al. (2011). The adventitia: A dynamic interface containing resident progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1530–1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology, 214, 199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tuder, R. M., Stacher, E., Robinson, J., et al. (2013). Pathology of pulmonary hypertension. Clinics in Chest Medicine, 34, 639–650.

    Article  PubMed  Google Scholar 

  70. Enzerink, A., & Vaheri, A. (2011). Fibroblast activation in vascular inflammation. Journal of Thrombosis and Haemostasis, 9, 619–626.

    Article  CAS  PubMed  Google Scholar 

  71. Chan, E. C., Peshavariya, H. M., Liu, G. S., et al. (2013). Nox4 modulates collagen production stimulated by transforming growth factor beta1 in vivo and in vitro. Biochemical and Biophysical Research Communications, 430, 918–925.

    Article  CAS  PubMed  Google Scholar 

  72. Bellini, A., & Mattoli, S. (2007). The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Laboratory Investigation, 87, 858–870.

    Article  CAS  PubMed  Google Scholar 

  73. Berk, B. C. (2001). Vascular smooth muscle growth: Autocrine growth mechanisms. Physiological Reviews, 81, 999–1030.

    CAS  PubMed  Google Scholar 

  74. Thannickal, V. J., & Fanburg, B. L. (1995). Activation of an H2O2-generating nadph oxidase in human lung fibroblasts by transforming growth factor beta 1. The Journal of Biological Chemistry, 270, 30334–30338.

    Google Scholar 

  75. Clempus, R. E., Sorescu, D., Dikalova, A. E., et al. (2007). Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 42–48.

    Article  CAS  PubMed  Google Scholar 

  76. Derrett-Smith, E. C., Dooley, A., Gilbane, A. J., et al. (2013). Endothelial injury in a transforming growth factor β-dependent mouse model of scleroderma induces pulmonary arterial hypertension. Arthritis and Rheumatism, 65, 2928–2939.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Barman Ph.D., FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Barman, S.A., Fulton, D. (2017). Adventitial Fibroblast Nox4 Expression and ROS Signaling in Pulmonary Arterial Hypertension. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_1

Download citation

Publish with us

Policies and ethics