Skip to main content

Reproducing Kernels

  • Chapter
  • First Online:
Harmonic and Complex Analysis in Several Variables

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1975 Accesses

Abstract

The theory of reproducing kernels goes back 100 years. Key players were Bochner, Bergman, and Szegö. Their ideas are still studied today.

Indeed, the Bergman kernel plaid a key role in the Fields-Medal-winning work of Charles Fefferman. Bergman’s kernel, metric, and representative coordinates continue to be areas of intense study.

Here we introduce the reader to this circle of ideas, and especially to the multiple-variable theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et Szegő, Soc. Mat. de France Asterisque 34–35(1976), 123–164.

    MATH  Google Scholar 

  2. L. Bungart, Holomorphic functions with values in locally convex spaces and applications to integral formulas, Trans. Am. Math. Soc. 111(1964), 317–344.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Christ, Singular Integrals, CBMS, Am. Math. Society, Providence, RI, 1990.

    MATH  Google Scholar 

  4. R. R. Coifman and G. L. Weiss, Analyse harmonique non-commutative sur certains espaces homogénes, Lecture Notes in Mathematics, Vol. 242. Springer–Verlag, Berlin-New York, 1971.

    Book  MATH  Google Scholar 

  5. R. Courant and D. Hilbert, Methods of Mathematical Physics, 2nd ed., Interscience, New York, 1966.

    MATH  Google Scholar 

  6. B. Epstein, Orthogonal Families of Functions, Macmillan, New York, 1965.

    MATH  Google Scholar 

  7. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26(1974), 1–65.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech. 13(1964), 125–132.

    MathSciNet  MATH  Google Scholar 

  9. I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \(\mathbb{C}^{n}\) with smooth boundary, Trans. Am. Math. Soc. 207(1975), 219–240.

    MATH  Google Scholar 

  10. N. Hanges, Explicit formulas for the Szegö kernel for some domains in \(\mathbb{C}^{2}\). J. Funct. Anal. 88 (1990), 153–165.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and applications to the \(\overline{\partial }\) problem, Mat. Sb. 82(124), 300–308 (1970); Math. U.S.S.R. Sb. 11(1970), 273–281.

    Google Scholar 

  12. L. Hörmander, Fourier integral operators, I, Acta Math. 127(1971), 79–183.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Hörmander and J. Sjöstrand, Fourier integral operators, II, Acta Math. 128(1972), 183–269.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, American Mathematical Society, Providence, 1963.

    Google Scholar 

  15. N. Kerzman and E. M. Stein, The Szegő kernel in terms of Cauchy–Fantappiè kernels, Duke Math. J. 45(1978), 197–224.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Kobayashi, Geometry of bounded domains, Trans. AMS 92(1959), 267–290.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  18. S. G. Krantz, Partial Differential Equations and Complex Analysis, CRC Press, Boca Raton, 1992.

    MATH  Google Scholar 

  19. S. G. Krantz, Canonical kernels versus constructible kernels, Rocky Mountain Journal of Mathemtics, to appear.

    Google Scholar 

  20. S. G. Krantz, Optimal Lipschitz and L p regularity for the equation \(\overline{\partial }u = f\) on strongly pseudo-convex domains, Math. Annalen 219(1976), 233–260.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. G. Krantz, Geometric Analysis of the Bergman Kernel and Metric, Birkhäuser, Boston, 2013.

    Book  MATH  Google Scholar 

  22. E. Ligocka, On orthogonal projections onto spaces of pluriharmonic functions and duality, Studia Math. 84(1986), 279–295.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Krantz, S.G. (2017). Reproducing Kernels. In: Harmonic and Complex Analysis in Several Variables. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-63231-5_5

Download citation

Publish with us

Policies and ethics