Skip to main content

The Heisenberg Group

  • Chapter
  • First Online:
Book cover Harmonic and Complex Analysis in Several Variables

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2052 Accesses

Abstract

One of the big contributions of E. M. Stein is the development of harmonic analysis on the Heisenberg group. In a fundamental joint paper with G. B. Folland, Stein laid all the groundwork for this study. In this chapter we reproduce and develop some of that groundwork. We contrast classical analysis on Euclidean space with the new analysis on the Heisenberg group.

In particular we treat the noncommutativity of the Heisenberg group. We develop the idea of homogeneous dimension. We prove results about fractional integrals. And we learn about commutators of vector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Suffice it to say that a group is nilpotent of step m if all mth order commutators in the group equal the identity—and if m is the least such integer. In particular, an abelian group is nilpotent of step 1.

  2. 2.

    It must be noted, however, that the rotations on the disc and the translations on the upper half plane do not “correspond” in any natural way; certainly the Cayley transform does not map the one group to the other. This anomaly is explored in the fine text [HOF, Ch. 3, 8].

  3. 3.

    We use here the classical terminology of Siegel upper half spaces. Such an upper half space is defined with an inequality using a quadratic form. The resulting space is unbounded. However, when the quadratic form is positive definite then the domain has a bounded realization—that is to say, it is biholomorphically equivalent to a bounded domain. See [KAN, Ch. 1, 7] for details of this theory.

  4. 4.

    In some sense it is more natural to consider commutators in the Lie algebra of the group. By way of the exponential map and the Campbell–Baker–Hausdorff formula (see [SER, Ch. 4]), the two different points of view are equivalent. We shall describe some of the Lie algebra approach in the material below. For now, the definition of commutators in the context of the group is a quick-and-dirty way to get at the idea we need to develop right now.

Bibliography

  1. S. Bell, Biholomorphic mappings and the \(\overline{\partial }\)-problem, Ann. Math., 114(1981), 103–113.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. R. Coifman and G. L. Weiss, Analyse harmonique non-commutative sur certains espaces homogénes, Lecture Notes in Mathematics, Vol. 242. Springer–Verlag, Berlin-New York, 1971.

    Book  MATH  Google Scholar 

  3. H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.

    MATH  Google Scholar 

  4. G. B. Folland, Spherical harmonic expansion of the Poisson–Szegö kernel for the ball, Proc. Am. Math. Soc. 47(1975), 401–408.

    MATH  Google Scholar 

  5. G. B. Folland and E. M. Stein, Estimates for the \(\overline{\partial }_{b}\) complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27(1974), 429–522.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, 28. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982.

    Google Scholar 

  7. D. Geller, Fourier analysis on the Heisenberg group, Proc. Nat. Acad. Sci. USA 74(1977), 1328–1331.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Geller, Fourier analysis on the Heisenberg group, Lie Theories and their Applications, Queen’s University, Kingston, Ontario, 1978, 434–438.

    Google Scholar 

  9. D. Geller, Fourier analysis on the Heisenberg group. I. Schwarz space, J. Functional Anal. 36(1980), 205–254.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Geller and E. M. Stein, Convolution operators on the Heisenberg group, Bull. Am. Math. Soc. 6(1982), 99–103.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.

    MATH  Google Scholar 

  12. K. Hoffman, Banach Spaces of Holomorphic Functions, Prentice-Hall, Englewood Cliffs, NJ. 1962.

    MATH  Google Scholar 

  13. Kaneyuki, Homogeneous Domains and Siegel Domains, Springer Lecture Notes #241, Berlin, 1971.

    Google Scholar 

  14. A. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. 93(1971), 489–578.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.

    MATH  Google Scholar 

  16. A. Koranyi and S. Vagi, Singular integrals in homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25(1971), 575–648.

    MathSciNet  MATH  Google Scholar 

  17. S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  18. S. G. Krantz, A Panorama of Harmonic Analysis, Mathematical Association of America, Washington, D.C., 1999.

    MATH  Google Scholar 

  19. S. G. Krantz, Lipschitz spaces on stratified groups, Trans. Am. Math. Soc. 269(1982), 39–66.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Nagel and W. Rudin, Local boundary behavior of bounded holomorphic functions, Can. Jour. Math. 30(1978), 583–592.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247–320.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Rudin, Function Theory in the Unit Ball of \(\mathbb{C}^{n}\), Springer, Berlin, 1980.

    Book  Google Scholar 

  23. J.-P. Serre, Lie algebras and Lie groups, Lectures given at Harvard University, 1964, W. A. Benjamin, Inc., New York-Amsterdam, 1965.

    MATH  Google Scholar 

  24. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, with the assistance of Timothy S. Murphy, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  25. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  26. H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36(1934), 63–89.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Krantz, S.G. (2017). The Heisenberg Group. In: Harmonic and Complex Analysis in Several Variables. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-63231-5_3

Download citation

Publish with us

Policies and ethics