Skip to main content

A Few Miscellaneous Topics

  • Chapter
  • First Online:
  • 1965 Accesses

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

This chapter could easily be the basis for a second volume. Here we treat the work of Christ/Geller on the structure of H p functions, we treat the ideas of Nagel/Stein about new approach regions for the Fatou theory, we talk about H 1 and BMO, we describe the atomic theory of Hardy spaces, and we discuss square functions.

These are all fundamental ideas of harmonic analysis, and they constitute an invitation for the reader to continue his/her studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    Google Scholar 

  2. P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value property, Jour. Functional Analysis 11(1993), 380–397.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Ahlfors, Complex Analysis, 3rd. ed., McGraw-Hill, New York, 1978.

    Google Scholar 

  4. L. A. Aĭzenberg, Fatou’s theorem, the convergence of sequences, and a uniqueness theorem for analytic functions of several variables, Moskov. Oblast. Ped. Inst. Uc̆en. Zap. 77(1959), 111–125.

    MathSciNet  Google Scholar 

  5. H. Arai, Singular elliptic operators related to harmonic analysis and complex analysis of several variables, Trends in Probability and Related Analysis (Taipei, 1998), 1–34, World Sci. Publ., River Edge, NJ, 1999.

    Google Scholar 

  6. J. Arazy and M. Engliš, Iterates and the boundary behavior of the Berezin transform, Ann Inst. Fourier (Grenoble) 51(2001), 1101–1133.

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc. 68(1950), 337–404.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Zeitschr. 61(1954), 186–199.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. R. Barker, Two theorems on boundary values of analytic functions, Proc. A. M. S. 68(1978), 48–54.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Barrett, The behavior of the Bergman projection on the Diederich–Fornaess worm, Acta Math. 168(1992), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Barrett, Irregularity of the Bergman projection on a smooth bounded domain in \(\mathbb{C}^{2},\) Annals of Math. 119(1984), 431–436.

    Google Scholar 

  12. D. Barrett, Regularity of the Bergman projection on domains with transverse symmetries, Math. Ann. 258(1981/82), 441–446.

    Google Scholar 

  13. T. N. Bailey, M. G. Eastwood, and C. R. Graham, Invariant theory for conformal and CR geometry, Annals of Math. 139(1994), 491–552.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Bedford and J.-E. Fornæss, A construction of peak functions on weakly pseudoconvex domains, Ann. Math. 107(1978), 555–568.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Bedford and J. E. Fornæss, Counterexamples to regularity for the complex Monge–Ampère equation, Invent. Math. 50 (1978/79), 129–134.

    Google Scholar 

  16. D. Békollé, A. Bonami, G. Garrigós, C. Nana, M. M. Peloso, F. Ricci, Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint, IMHOTEP J. Afr. Math. Pures Appl. 5(2004), Exp. I, front matter + ii + 75 pp.

    Google Scholar 

  17. S. Bell, Biholomorphic mappings and the \(\overline{\partial }\)-problem, Ann. Math., 114(1981), 103–113.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Bell, The Cauchy Transform, Potential Theory, and Conformal Mapping, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.

    Google Scholar 

  19. S. Bell, Local boundary behavior of proper holomorphic mappings, Proc. Sympos. Pure Math, vol. 41, American Math. Soc., Providence R.I., 1984, 1–7.

    Google Scholar 

  20. S. Bell and H. Boas, Regularity of the Bergman projection in weakly pseudoconvex domains, Math. Annalen 257(1981), 23–30.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Bell and S. G. Krantz, Smoothness to the boundary of conformal maps, Rocky Mt. Jour. Math. 17(1987), 23–40.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Bell and E. Ligocka, A simplification and extension of Fefferman’s theorem on biholomorphic mappings, Invent. Math. 57(1980), 283–289.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Berenstein, D.-C. Chang, W. Eby, L p results for the Pompeiu problem with moments on the Heisenberg group. J. Fourier Anal. Appl. 10(2004), 545–571.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Berenstein, D.-C. Chang, J. Tie, Laguerre calculus and its applications on the Heisenberg group. AMS/IP Studies in Advanced Mathematics, 22. American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2001. xii+319 pp.

    Google Scholar 

  25. F. A. Berezin, Quantization in complex symmetric spaces, Math. USSR Izvestia 9(1975), 341–379.

    Article  MATH  Google Scholar 

  26. J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Springer-Verlag, Berlin, 1976.

    Book  MATH  Google Scholar 

  27. S. Bergman, Über die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonal funktionen, Math. Annalen 86(1922), 238–271.

    Article  MathSciNet  Google Scholar 

  28. S. Bergman, The Kernel Function and Conformal Mapping, Am. Math. Soc., Providence, RI, 1970.

    MATH  Google Scholar 

  29. S. Bergman and M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, New York, 1953.

    MATH  Google Scholar 

  30. B. Berndtsson and P. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235(2000), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Bers, Introduction to Several Complex Variables, New York Univ. Press, New York, 1964.

    Google Scholar 

  32. B. Blank and S. G. Krantz, Calculus, Key College Press, Emeryville, CA, 2006.

    MATH  Google Scholar 

  33. Z. Blocki and P. Pflug, Hyperconvexity and Bergman completeness, Nagoya Math. J. 151(1998), 221–225.

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Boas, Counterexample to the Lu Qi-Keng conjecture, Proc. Am. Math. Soc. 97(1986), 374–375.

    MathSciNet  MATH  Google Scholar 

  35. H. Boas, Sobolev space projections in strictly pseudoconvex domains, Trans. Amer. Math. Soc. 288(1985), 227–240.

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Boas, Lu Qi-Keng’s problem. Several complex variables (Seoul, 1998), J. Korean Math. Soc. 37(2000), 253–267.

    Google Scholar 

  37. H. Boas, The Lu Qi-Keng conjecture fails generically, Proc. Amer. Math. Soc. 124(1996), 2021–2027.

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Boas, S. G. Krantz, M. M. Peloso, unpublished.

    Google Scholar 

  39. H. Boas and E. Straube, Equivalence of regularity for the Bergman projection and the \(\overline{\partial }\)-Neumann operator, Manuscripta Math. 67(1990), 25–33.

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Boas and E. Straube, Sobolev estimates for the \(\overline{\partial }\)-Neumann operator on domains in \(\mathbb{C}^{n}\) admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), 81–88.

    Google Scholar 

  41. S. Bochner, Orthogonal systems of analytic functions, Math. Z. 14(1922), 180–207.

    Article  MathSciNet  Google Scholar 

  42. A. Boggess, CR Functions and the Tangential Cauchy–Riemann Complex, CRC Press, Boca Raton, 1991.

    MATH  Google Scholar 

  43. A. Boussejra, K. Koufany, Characterization of the Poisson integrals for the non-tube bounded symmetric domains, J. Math. Pures Appl. 87(2007), 438–451.

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Boutet de Monvel, Le noyau de Bergman en dimension 2, Séminaire sur les Équations aux Dérivées Partielles 1987–1988, Exp. no. XXII, École Polytechnique Palaiseau, 1988, p. 13.

    Google Scholar 

  45. L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et Szegő, Soc. Mat. de France Asterisque 34–35(1976), 123–164.

    MATH  Google Scholar 

  46. H. Bremerman, Über die Äquivalenz der pseudoconvex Gebiete und der Holomorphie-gebiete in Raum von n Komplexen Veränderlichen, Math. Ann. 128(1954), 63–91.

    Article  MathSciNet  Google Scholar 

  47. L. Bungart, Holomorphic functions with values in locally convex spaces and applications to integral formulas, Trans. Am. Math. Soc. 111(1964), 317–344.

    Article  MathSciNet  MATH  Google Scholar 

  48. D. Burkholder, R. Gundy, and M. Silverstein, A maximal function characterization of the class H p, Trans. Am. Math. Soc. 157(1971), 137–153.

    MathSciNet  MATH  Google Scholar 

  49. D. Burns, S. Shnider, and R. O. Wells, On deformations of strictly pseudoconvex domains, Invent. Math. 46(1978), 237–253.

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38(1985), 209–252.

    Google Scholar 

  51. A. Calderón, On the behavior of harmonic functions near the boundary, Trans. Amer. Math. Soc. 68(1950), 47–54.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Calderón and A. Zygmund, Note on the boundary values of functions of several complex variables, Contributions to Fourier Analysis, Annals of Mathematics Studies, no. 25, Princeton University Press, Princeton, NJ, 1950, 145–165.

    Google Scholar 

  53. A. P. Calderón and A. Zygmund, Note on the limit values of analytic functions. (Spanish) Revista Uni. Mat. Argentina 14(1949), 16–19.

    Google Scholar 

  54. A. Carbery, A version of Cotlar’s lemma for L p spaces and some applications, Harmonic Analysis and Operator Theory (Caracas, 1994), 117–134, Contemp. Math., 189, Amer. Math. Soc., Providence, RI, 1995.

    Google Scholar 

  55. Carrier, Crook, and Pearson, Functions of a Complex Variable, McGraw–Hill, New York, 1966.

    Google Scholar 

  56. D. Catlin, Necessary conditions for subellipticity of the \(\overline{\partial }-\) Neumann problem, Ann. Math. 117(1983), 147–172.

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Catlin, Subelliptic estimates for the \(\overline{\partial }\) Neumann problem, Ann. Math. 126(1987), 131–192.

    Article  MathSciNet  MATH  Google Scholar 

  58. D. Catlin, Boundary behavior of holomorphic functions on pseudoconvex domains, J. Differential Geom. 15(1980), 605–625.

    Article  MathSciNet  MATH  Google Scholar 

  59. D.-C. Chang, On the boundary of Fourier and complex analysis: the Pompeiu problem, Taiwanese J. Math. 6(2002), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  60. D.-C. Chang, Singular integrals: Calderón–Zygmund-Stein theory, preprint.

    Google Scholar 

  61. D.-C. Chang, W. Eby, Pompeiu problem on product of Heisenberg groups, Complex Anal. Oper. Theory 4 (2010), 619–683.

    Article  MathSciNet  MATH  Google Scholar 

  62. S.-C. Chen, Characterization of automorphisms on the Barrett and the Diederich–Fornaess worm domains, Trans. Amer. Math. Soc. 338(1993), 431–440.

    MathSciNet  MATH  Google Scholar 

  63. S.-C. Chen, A counterexample to the differentiability of the Bergman kernel function, Proc. AMS 124(1996), 1807–1810.

    Article  MathSciNet  MATH  Google Scholar 

  64. B.-Y. Chen and S. Fu, Comparison of the Bergman and Szegő kernels, Advances in Math. 228(2011), 2366–2384.

    Article  MathSciNet  MATH  Google Scholar 

  65. S.-C. Chen and M.-C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP Studies in Advanced Mathematics, 19, American Mathematical Society, Providence, RI, 2001.

    Book  Google Scholar 

  66. S.-Y. Cheng, Open problems, Conference on Nonlinear Problems in Geometry Held in Katata, September, 1979, Tohoku University, Dept. of Mathematics, Sendai, 1979, p. 2.

    Google Scholar 

  67. S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133(1974), 219–271.

    Article  MathSciNet  MATH  Google Scholar 

  68. K. S. Choi, Notes on Carleson type measures on bounded symmetric domain, Commun. Korean Math. Soc. 22(2007), 65–74.

    Article  MathSciNet  MATH  Google Scholar 

  69. M. Christ, Singular Integrals, CBMS, Am. Math. Society, Providence, RI, 1990.

    MATH  Google Scholar 

  70. M. Christ, Global C irregularity of the \(\overline{\partial }\)-Neumann problem for worm domains, J. Amer. Math. Soc. 9(1996), 1171–1185.

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Christ and D. Geller, Singular integral characterizations of Hardy spaces on homogeneous groups, Duke Math. J. 51(1984), 547–598.

    Article  MathSciNet  MATH  Google Scholar 

  72. J. Cima and S. G. Krantz, A Lindelöf principle and normal functions in several complex variables, Duke Math. Jour. 50(1983), 303–328.

    Article  MATH  Google Scholar 

  73. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103(1976), 611–635.

    Article  MathSciNet  MATH  Google Scholar 

  74. R. R. Coifman and G. L. Weiss, Analyse harmonique non-commutative sur certains espaces homogénes, Lecture Notes in Mathematics, Vol. 242. Springer–Verlag, Berlin-New York, 1971.

    Book  MATH  Google Scholar 

  75. R. R. Coifman and G. L. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83(1977), 569–645.

    Article  MathSciNet  MATH  Google Scholar 

  76. E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge University Press, Cambridge, 1966.

    Book  MATH  Google Scholar 

  77. P. E. Conner, The Neumann’s Problem for Differential Forms on Riemannian Manifolds, Mem. Am. Math. Soc. #20, 1956.

    Google Scholar 

  78. A. Cordoba and R. Fefferman, On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier analysis, Proc. Nat. Acad. Sci. U.S.A. 74(1977), 423–425.

    Article  MathSciNet  MATH  Google Scholar 

  79. M. Cotlar, A combinatorial inequality and its applications to L 2-spaces, Rev. Mat. Cuyana 1(1955), 41–55.

    MathSciNet  Google Scholar 

  80. R. Courant and D. Hilbert, Methods of Mathematical Physics, 2nd ed., Interscience, New York, 1966.

    MATH  Google Scholar 

  81. G. Dafni, Hardy spaces on strongly pseudoconvex domains in \(\mathbb{C}^{n}\) and domains of finite type in \(\mathbb{C}^{2}\), Thesis (Ph.D.) Princeton University, 1993, 86 pp.

    Google Scholar 

  82. G. Dafni, Hardy spaces on some pseudoconvex domains, J. Geom. Anal. 4(1994), 273–316.,

    Article  MathSciNet  MATH  Google Scholar 

  83. S. B. Damelin, A. J. Devaney, Local Paley–Wiener theorems for functions analytic on unit spheres, Inverse Problems 23(2007), 463–474.

    Article  MathSciNet  MATH  Google Scholar 

  84. M. de Guzman, Differentiation of Integrals in \(\mathbb{R}^{n}\), Springer Lecture Notes, Springer-Verlag, Berlin and New York, 1975.

    Book  Google Scholar 

  85. J.-P. Demailly, Analytic Methods in Algebraic Geometry, Surveys of Modern Mathematics, 1. International Press, Somerville, MA; Higher Education Press, Beijing, 2012. viii+231 pp.

    Google Scholar 

  86. F. Di Biase, Fatou Type Theorems. Maximal Functions and Approach Regions, Progress in Mathematics, 147. Birkhäuser Boston, Boston, MA, 1998.

    Google Scholar 

  87. F. Di Biase and B. Fischer, Boundary behaviour of H p functions on convex domains of finite type in \(\mathbb{C}^{n}\), Pacific J. Math. 183(1998), 25–38.

    Article  MathSciNet  MATH  Google Scholar 

  88. F. DiBiase and S. G. Krantz, The Boundary Behavior of Holomorphic Functions, Birkhäuser Publishing, to appear.

    Google Scholar 

  89. K. Diederich, Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann. 187(1970), 9–36.

    Article  MathSciNet  MATH  Google Scholar 

  90. K. Diederich, Über die 1. and 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten, Math. Ann. 203(1973), 129–170.

    Article  MathSciNet  MATH  Google Scholar 

  91. K. Diederich and J.-E. Fornæss, Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39(1977), 129–141.

    Article  MathSciNet  MATH  Google Scholar 

  92. K. Diederich and J.-E. Fornæss, Pseudoconvex domains: An example with nontrivial Nebenhülle, Math. Ann. 225(1977), 275–292.

    Article  MathSciNet  MATH  Google Scholar 

  93. K. Diederich and J.-E. Fornæss, Pseudoconvex domains with real-analytic boundary, Annals of Math. 107(1978), 371–384.

    Article  MathSciNet  MATH  Google Scholar 

  94. K. Diederich and J. E. Fornæss, Smooth extendability of proper holomorphic mappings, Bull. Amer. Math. Soc. (N.S.) 7(1982), 264–268.

    Google Scholar 

  95. C. Domenichino, Converse of spherical mean-value property for invariant harmonic functions, Complex Variables Theory Appl. 45(2001), 371–385.

    Article  MathSciNet  MATH  Google Scholar 

  96. E. Doubtsov, An F. and M. Riesz theorem on the complex sphere, J. Fourier Anal. Appl. 12(2006), 225–231.

    Article  MathSciNet  MATH  Google Scholar 

  97. E. S. Dubtsov, Some problems of harmonic analysis on a complex sphere, Vestnik St. Petersburg Univ. Math. 28(1995), 12–16.

    MathSciNet  MATH  Google Scholar 

  98. E. S. Dubtsov, On the radial behavior of functions holomorphic in a ball, Vestnik St. Petersburg Univ. Math. 27(1994), 21–27.

    MathSciNet  MATH  Google Scholar 

  99. P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on H p spaces with 0 < p < 1, J. Reine Angew. Math. 238(1969), 32–60.

    MathSciNet  MATH  Google Scholar 

  100. M. Engliš, Functions invariant under the Berezin transform, J. Funct. Anal. 121(1994), 233–254.

    Article  MathSciNet  MATH  Google Scholar 

  101. M. Engliš, Asymptotics of the Berezin transform and quantization on planar domains, Duke Math. J. 79(1995), 57–76.

    Article  MathSciNet  MATH  Google Scholar 

  102. B. Epstein, Orthogonal Families of Functions, Macmillan, New York, 1965.

    MATH  Google Scholar 

  103. H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.

    MATH  Google Scholar 

  104. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26(1974), 1–65.

    Article  MathSciNet  MATH  Google Scholar 

  105. C. Fefferman, Monge–Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. 103(1976), 395–416.

    Article  MathSciNet  MATH  Google Scholar 

  106. C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77(1971), 587–588.

    Article  MathSciNet  MATH  Google Scholar 

  107. C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129(1972), 137–193.

    Article  MathSciNet  MATH  Google Scholar 

  108. G. B. Folland, Spherical harmonic expansion of the Poisson–Szegö kernel for the ball, Proc. Am. Math. Soc. 47(1975), 401–408.

    MATH  Google Scholar 

  109. G. B. Folland, Some topics in the history of harmonic analysis in the twentieth century, Indian J. Pure Appl. Math. 48(2017), 1–58.

    Article  MathSciNet  Google Scholar 

  110. G. B. Folland and J. J. Kohn, The Neumann Problem for the Cauchy–Riemann Complex, Princeton University Press, Princeton, 1972.

    MATH  Google Scholar 

  111. G. B. Folland and E. M. Stein, Estimates for the \(\overline{\partial }_{b}\) complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27(1974), 429–522.

    Article  MathSciNet  MATH  Google Scholar 

  112. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, 28. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982.

    Google Scholar 

  113. L. Fontana, S. G. Krantz, and M. M. Peloso, The \(\overline{\partial }\)-Neumann problem in the Sobolev topology, Indiana Journal of Math. 48(1999), 275–293.

    MathSciNet  MATH  Google Scholar 

  114. F. Forstneric, An elementary proof of Fefferman’s theorem, Expositiones Math., 10(1992), 136–149.

    MathSciNet  MATH  Google Scholar 

  115. B. Fridman, A universal exhausting domain, Proc. Am. Math. Soc. 98(1986), 267–270.

    Article  MathSciNet  MATH  Google Scholar 

  116. S. Fu and B. Wong, On strictly pseudoconvex domains with Kähler–Einstein Bergman metrics, Math. Res. Letters 4(1997), 697–703.

    Article  MathSciNet  MATH  Google Scholar 

  117. T. W. Gamelin, Uniform Algebras, Prentice Hall, Englewood Cliffs, 1969.

    MATH  Google Scholar 

  118. T. Gamelin and N. Sibony, Subharmonicity for uniform algebras. J. Funct. Anal. 35 (1980), 64–108.

    Article  MathSciNet  MATH  Google Scholar 

  119. P. R. Garabedian, A Green’s function in the theory of functions of several complex variables, Ann. of Math. 55(1952). 19–33.

    Article  MathSciNet  MATH  Google Scholar 

  120. J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

    MATH  Google Scholar 

  121. J. B. Garnett and R. H. Latter, The atomic decomposition for Hardy spaces in several complex variables, Duke Math. J. 45(1978), 815–845.

    Article  MathSciNet  MATH  Google Scholar 

  122. D. Geller, Fourier analysis on the Heisenberg group, Proc. Nat. Acad. Sci. USA 74(1977), 1328–1331.

    Article  MathSciNet  MATH  Google Scholar 

  123. D. Geller, Fourier analysis on the Heisenberg group, Lie Theories and their Applications, Queen’s University, Kingston, Ontario, 1978, 434–438.

    Google Scholar 

  124. D. Geller, Fourier analysis on the Heisenberg group. I. Schwarz space, J. Functional Anal. 36(1980), 205–254.

    Article  MathSciNet  MATH  Google Scholar 

  125. D. Geller and E. M. Stein, Convolution operators on the Heisenberg group, Bull. Am. Math. Soc. 6(1982), 99–103.

    Article  MathSciNet  MATH  Google Scholar 

  126. S. Gindikin, Holomorphic harmonic functions. Russ. J. Math. Phys. 15(2008), 243–245.

    Article  MathSciNet  MATH  Google Scholar 

  127. A. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech. 13(1964), 125–132.

    MathSciNet  MATH  Google Scholar 

  128. The abstract theorem of Cauchy–Weil, Pac. J. Math. 12(1962), 511–525.

    Google Scholar 

  129. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Providence, 1969.

    MATH  Google Scholar 

  130. D. D. Gong, Some estimates for singular integrals in the building domain of complex biballs (Chinese), J. Math. Study 40(2007), 290–296.

    MathSciNet  MATH  Google Scholar 

  131. C. R. Graham, The Dirichlet problem for the Bergman Laplacian, I, Comm. Partial Differential Equations 8(1983), 433–476.

    Article  MathSciNet  MATH  Google Scholar 

  132. C. R. Graham, The Dirichlet problem for the Bergman Laplacian, II, Comm. Partial Differential Equations 8(1983), 563–641.

    Article  MathSciNet  MATH  Google Scholar 

  133. C. R. Graham, Scalar boundary invariants and the Bergman kernel, Complex analysis, II (College Park, Md., 1985–86), 108–135, Lecture Notes in Math. 1276, Springer, Berlin, 1987.

    Google Scholar 

  134. I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \(\mathbb{C}^{n}\) with smooth boundary, Trans. Am. Math. Soc. 207(1975), 219–240.

    MATH  Google Scholar 

  135. H. Grauert and I. Lieb, Das Ramirezsche Integral und die Gleichung \(\overline{\partial }u =\alpha\) im Bereich der beschränkten Formen, Rice University Studies 56(1970), 29–50.

    MathSciNet  MATH  Google Scholar 

  136. R. E. Greene, K.-T. Kim, and S. G. Krantz, The Geometry of Complex Domains, Birkhäuser, Boston, 2011.

    Book  MATH  Google Scholar 

  137. R. E. Greene and S. G. Krantz, Stability properties of the Bergman kernel and curvature properties of bounded domains, Recent Developments in Several Complex Variables (J. E. Fornæss, ed.), Princeton University Press (1979), 179–198.

    Google Scholar 

  138. R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the \(\overline{\partial }\) equation, and stability of the Bergman kernel, Adv. Math. 43(1982), 1–86.

    Article  MathSciNet  MATH  Google Scholar 

  139. R. E. Greene and S. G. Krantz, Biholomorphic self-maps of domains, Complex Analysis II (C. Berenstein, ed.), Springer Lecture Notes, vol. 1276, 1987, 136–207.

    Google Scholar 

  140. R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, 3rd ed., American Mathematical Society, Providence, RI, 2006.

    MATH  Google Scholar 

  141. R. E. Greene and S. G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Annalen 261(1982), 425–446.

    Article  MathSciNet  MATH  Google Scholar 

  142. P. Greiner, Subelliptic estimates for the \(\overline{\partial }\)-Neumann problem in \(\mathbb{C}^{2},\) J. Diff. Geom. 9(1974), 239–250.

    Google Scholar 

  143. P. Greiner, J. J. Kohn, and E. M. Stein, Necessary and sufficient conditions for solvability of the Lewy equation, Proc. Nat. Acad. Sci. 72(1975), 3287–3289.

    Article  MathSciNet  MATH  Google Scholar 

  144. P. Greiner and E. M. Stein, Estimates for the \(\overline{\partial }\)-Neumann Problem, Princeton University Press, Princeton, NJ, 1977.

    Google Scholar 

  145. N. Hanges, Explicit formulas for the Szegö kernel for some domains in \(\mathbb{C}^{2}\). J. Funct. Anal. 88 (1990), 153–165.

    Article  MathSciNet  MATH  Google Scholar 

  146. G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Q. J. Math. Oxford Ser. 12 (1941), 221–256.

    Article  MathSciNet  MATH  Google Scholar 

  147. G. H. Hardy and J. E. Littlewood, Some properties of functional integrals II, Math. Zeit. 4(1932), 403–439.

    Article  MATH  Google Scholar 

  148. R. Harvey and J. Polking, Fundamental solutions in complex analysis I and II, Duke Math. J. 46(1979), 253–300 and 46(1979), 301–340.

    Google Scholar 

  149. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.

    MATH  Google Scholar 

  150. G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and applications to the \(\overline{\partial }\) problem, Mat. Sb. 82(124), 300–308 (1970); Math. U.S.S.R. Sb. 11(1970), 273–281.

    Google Scholar 

  151. G. M. Henkin, Solutions with estimates of the H. Lewy and Poincaré–Lelong equations, the construction of functions of a Nevanlinna class with given zeroes in a strictly pseudoconvex domain, Dok. Akad. Nauk. SSSR 224(1975), 771–774; Sov. Math. Dokl. 16(1975), 1310–1314.

    Google Scholar 

  152. E. Hille, Analytic Function Theory, Ginn & Co., Boston, MA, 1959.

    MATH  Google Scholar 

  153. K. Hirachi, The second variation of the Bergman kernel of ellipsoids, Osaka J. Math. 30(1993), 457–473.

    MathSciNet  MATH  Google Scholar 

  154. K. Hirachi, Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds, Complex Geometry (Osaka, 1990), Lecture Notes Pure Appl. Math., v. 143, Marcel Dekker, New York, 1993, 67–76.

    Google Scholar 

  155. K. Hirachi, Construction of boundary invariants and the logarithmic singularity in the Bergman kernel, Annals of Math. 151(2000), 151–190.

    Article  MathSciNet  MATH  Google Scholar 

  156. M. Hirsch, Differential Topology, Springer–Verlag, New York, 1976.

    Book  MATH  Google Scholar 

  157. K. Hoffman, Banach Spaces of Holomorphic Functions, Prentice-Hall, Englewood Cliffs, NJ. 1962.

    MATH  Google Scholar 

  158. L. Hörmander, L 2 estimates and existence theorems for the \(\overline{\partial }\) operator, Acta Math. 113(1965), 89–152.

    Article  MathSciNet  MATH  Google Scholar 

  159. L. Hörmander, Linear Partial Differential Operators, Springer, Berlin, 1963.

    Book  MATH  Google Scholar 

  160. L. Hörmander, Fourier integral operators, I, Acta Math. 127(1971), 79–183.

    Article  MathSciNet  MATH  Google Scholar 

  161. L. Hörmander, Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  162. L p estimates for (pluri-)subharmonic functions, Math. Scand. 20(1967), 65–78.

    Google Scholar 

  163. L. Hörmander and J. Sjöstrand, Fourier integral operators, II, Acta Math. 128(1972), 183–269.

    Article  MathSciNet  MATH  Google Scholar 

  164. L. Hörmander, Estimates for translation invariant o perators in L p spaces, Acta Math. 104(1960), 93–140.

    Article  MathSciNet  MATH  Google Scholar 

  165. L. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, American Mathematical Society, Providence, 1963.

    Google Scholar 

  166. A. Isaev and S. G. Krantz, Domains with non-compact automorphism group: A Survey, Advances in Math. 146(1999), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  167. H. Jacobowitz and F. Treves, Nowhere solvable homogeneous partial differential equations, Bull. A.M.S. 8(1983), 467–469.

    Article  MathSciNet  MATH  Google Scholar 

  168. S. Jakobsson, Weighted Bergman kernels and biharmonic Green functions, Ph.D. thesis, Lunds Universitet, 2000, 134 pages.

    Google Scholar 

  169. P. Jaming, M. Roginskaya, Boundary behaviour of M-harmonic functions and non-isotropic Hausdorff measure, Monatsh. Math. 134(2002), 217–226.

    Article  MathSciNet  MATH  Google Scholar 

  170. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure and Appl. Math. 14(1961), 415–426.

    Article  MathSciNet  MATH  Google Scholar 

  171. S. Kaczmarz, Über die Konvergenz der Reihen von Orthogonal-funktionen, Math. Z. 23(1925), 263–270.

    Article  MathSciNet  MATH  Google Scholar 

  172. Kaneyuki, Homogeneous Domains and Siegel Domains, Springer Lecture Notes #241, Berlin, 1971.

    Google Scholar 

  173. Y. Katznelson, Introduction to Harmonic Analysis, Wiley, New York, 1968.

    MATH  Google Scholar 

  174. O. Kellogg, Harmonic functions and Green’s integral, Trans. Am. Math. Soc. 13(1912), 109–132.

    MathSciNet  MATH  Google Scholar 

  175. N. Kerzman, Hölder and L p estimates for solutions of \(\overline{\partial }u = f\) on strongly pseudoconvex domains, Comm. Pure Appl. Math. XXIV(1971), 301–380.

    Google Scholar 

  176. N. Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195(1972), 149–158.

    Article  MathSciNet  Google Scholar 

  177. N. Kerzman, A Monge–Ampère equation in complex analysis, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), pp. 161–167. Amer. Math. Soc., Providence, R.I., 1977.

    Google Scholar 

  178. N. Kerzman, Topics in Complex Analysis, unpublished notes, MIT, 1978.

    Google Scholar 

  179. N. Kerzman and E. M. Stein, The Szegő kernel in terms of Cauchy–Fantappiè kernels, Duke Math. J. 45(1978), 197–224.

    Article  MathSciNet  MATH  Google Scholar 

  180. C. Kiselman, A study of the Bergman projection in certain Hartogs domains, Proc. Symposia Pure Math., vol. 52 (E. Bedford, J. D’Angelo, R. Greene, and S. Krantz eds.), American Mathematical Society, Providence, 1991.

    Google Scholar 

  181. P. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27(1978), 275–282.

    Article  MathSciNet  MATH  Google Scholar 

  182. A. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. 93(1971), 489–578.

    Article  MathSciNet  MATH  Google Scholar 

  183. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.

    MATH  Google Scholar 

  184. S. Kobayashi, Geometry of bounded domains, Trans. AMS 92(1959), 267–290.

    Article  MathSciNet  MATH  Google Scholar 

  185. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. I and II, Interscience, New York, 1963, 1969.

    Google Scholar 

  186. J. J. Kohn, Quantitative estimates for global regularity, Analysis and geometry in several complex variables (Katata, 1997), 97–128, Trends Math., Birkhäuser Boston, Boston, MA, 1999.

    Google Scholar 

  187. J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds I, Ann. Math. 78(1963), 112–148; II, ibid. 79(1964), 450–472.

    Google Scholar 

  188. J. J. Kohn, Global regularity for \(\overline{\partial }\) on weakly pseudoconvex manifolds, Trans. A. M. S. 181(1973), 273–292.

    MATH  Google Scholar 

  189. J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18(1965), 443–492.

    Article  MathSciNet  MATH  Google Scholar 

  190. J. J. Kohn and L. Nirenberg, On the algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18(1965), 269–305.

    Article  MathSciNet  MATH  Google Scholar 

  191. P. Koosis, Lectures onH p Spaces, Cambridge University Press, Cambridge, UK, 1980.

    Google Scholar 

  192. A. Korányi, Harmonic functions on Hermitian hyperbolic space, Trans. A.M.S. 135(1969), 507–516.

    Article  MathSciNet  MATH  Google Scholar 

  193. A. Korányi, Boundary behavior of Poisson integrals on symmetric spaces, Trans. A.M.S. 140(1969), 393–409.

    Article  MathSciNet  MATH  Google Scholar 

  194. A. Koranyi and S. Vagi, Singular integrals in homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25(1971), 575–648.

    MathSciNet  MATH  Google Scholar 

  195. S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  196. S. G. Krantz, A Panorama of Harmonic Analysis, Mathematical Association of America, Washington, D.C., 1999.

    MATH  Google Scholar 

  197. S. G. Krantz, Real Analysis and Foundations, CRC Press, Boca Raton, 1992.

    MATH  Google Scholar 

  198. S. G. Krantz, Fractional integration on Hardy spaces, Studia Math. 73(1982), 87–94.

    MathSciNet  MATH  Google Scholar 

  199. S. G. Krantz, Partial Differential Equations and Complex Analysis, CRC Press, Boca Raton, 1992.

    MATH  Google Scholar 

  200. S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Expositiones Math. 3(1983), 193–260.

    MathSciNet  MATH  Google Scholar 

  201. S. G. Krantz, Invariant metrics and the boundary behavior of holomorphic functions on domains in \(\mathbb{C}^{n}\), J. Geom. Anal. 1(1991), 71–97.

    Article  MathSciNet  MATH  Google Scholar 

  202. S. G. Krantz, Canonical kernels versus constructible kernels, Rocky Mountain Journal of Mathemtics, to appear.

    Google Scholar 

  203. S. G. Krantz, Holomorphic functions of bounded mean oscillation and mapping properties of the Szegő projection, Duke Math. Jour. 47(1980), 743–761.

    Article  MATH  Google Scholar 

  204. S. G. Krantz, Optimal Lipschitz and L p regularity for the equation \(\overline{\partial }u = f\) on strongly pseudo-convex domains, Math. Annalen 219(1976), 233–260.

    Article  MathSciNet  MATH  Google Scholar 

  205. S. G. Krantz, Explorations in Harmonic Analysis, with Applications in Complex Function Theory and the Heisenberg Group, Birkhäuser Publishing, Boston, 2009.

    MATH  Google Scholar 

  206. S. G. Krantz, Geometric Lipschitz spaces and applications to complex function theory and nilpotent groups, J. Funct. Anal. 34(1980), 456–471.

    Article  MathSciNet  MATH  Google Scholar 

  207. S. G. Krantz, Calculation and estimation of the Poisson kernel, J. Math. Anal. Appl. 302(2005)143–148.

    Article  MathSciNet  MATH  Google Scholar 

  208. S. G. Krantz, The Lindelöf principle in several complex variables, Journal of Math. Anal. and Applications 326(2007), 1190–1198.

    Article  MathSciNet  MATH  Google Scholar 

  209. S. G. Krantz, Geometric Analysis and Function Spaces, CBMS and the American Mathematical Society, Providence, 1993.

    Book  MATH  Google Scholar 

  210. S. G. Krantz, Complex Analysis: The Geometric Viewpoint, 2nd ed., Mathematical Association of America, Washington, D.C., 2004.

    Book  MATH  Google Scholar 

  211. S. G. Krantz, Cornerstones of Geometric Function Theory: Explorations in Complex Analysis, Birkhäuser Publishing, Boston, 2006.

    MATH  Google Scholar 

  212. S. G. Krantz, Geometric Analysis of the Bergman Kernel and Metric, Birkhäuser, Boston, 2013.

    Book  MATH  Google Scholar 

  213. S. G. Krantz, Characterization of various domains of holomorphy via \(\overline{\partial }\) estimates and applications to a problem of Kohn, Ill. J. Math. 23(1979), 267–286.

    MathSciNet  MATH  Google Scholar 

  214. S. G. Krantz, On a construction of L. Hua for positive reproducing kernels, Michigan Math. J. 59(2010), 211–230.

    Article  MathSciNet  MATH  Google Scholar 

  215. S. G. Krantz, A new proof and a generalization of Ramadanov’s theorem, Complex Variables and Elliptic Eq. 51(2006), 1125–1128.

    Article  MathSciNet  MATH  Google Scholar 

  216. S. G. Krantz, Boundary decomposition of the Bergman kernel, Rocky Mountain Journal of Math., 41(2011), 1265–1272.

    Article  MathSciNet  MATH  Google Scholar 

  217. S. G. Krantz, A direct connection between the Bergman and Szegő kernels, Complex Analysis and Operator Theory 8(2014), 571–579.

    Article  MathSciNet  MATH  Google Scholar 

  218. S. G. Krantz, Lipschitz spaces on stratified groups, Trans. Am. Math. Soc. 269(1982), 39–66.

    Article  MathSciNet  MATH  Google Scholar 

  219. S. G. Krantz, Harmonic analysis of several complex variables: a survey, Expo. Math. 31(2013), 215–255.

    Article  MathSciNet  MATH  Google Scholar 

  220. S. G. Krantz and S.-Y. Li, Area integral characterizations of functions in Hardy spaces on domains in \(\mathbb{C}^{n}\), Complex Variables Theory Appl. 32(1997), 373–399.

    Article  MathSciNet  MATH  Google Scholar 

  221. S. G. Krantz and S.-Y. Li, A Note on Hardy Spaces and Functions of Bounded Mean Oscillation on Domains in \(\mathbb{C}^{n}\), Michigan Jour. Math. 41 (1994), 51–72.

    Article  MathSciNet  MATH  Google Scholar 

  222. S. G. Krantz and S.-Y. Li, On decomposition theorems for Hardy spaces on domains in \(\mathbb{C}^{n}\) and applications, J. Fourier Anal. Appl. 2(1995), 65–107.

    Article  MathSciNet  Google Scholar 

  223. S. G. Krantz and S.-Y. Li, On the existence of smooth plurisubharmonic solutions for certain degenerate Monge–Ampère equations, Complex Variables Theory Appl. 41(2000), 207–219.

    Article  MathSciNet  MATH  Google Scholar 

  224. S. G. Krantz and S.-Y. Li, Duality theorems for Hardy and Bergman spaces on convex domains of finite type in \(\mathbb{C}^{n}\), Ann. Inst. Fourier (Grenoble) 45(1995), 1305–1327.

    Google Scholar 

  225. S. G. Krantz and D. Ma, BMO and Duality on pseudoconvex domains, preprint.

    Google Scholar 

  226. S. G. Krantz and H. R. Parks, A Primer of Real Analytic Functions, 2nd ed., Birkhäuser, Boston, 2002.

    Book  MATH  Google Scholar 

  227. S. G. Krantz and H. R. Parks, The Geometry of Domains in Space, Birkhäuser, Boston, 1996.

    MATH  Google Scholar 

  228. S. G. Krantz and H. R. Parks, The Implicit Function Theorem, Birkhäuser, Boston, 2002.

    MATH  Google Scholar 

  229. S. G. Krantz and H. R. Parks, Distance to C k manifolds, Jour. Diff. Equations 40(1981), 116–120.

    Article  MATH  Google Scholar 

  230. S. G. Krantz and M. M. Peloso, The Bergman kernel and projection on non-smooth worm domains, Houston J. Math. 34 (2008), 873–950.

    MathSciNet  MATH  Google Scholar 

  231. S. G. Krantz and M. M. Peloso, Analysis and geometry on worm domains, J. Geom. Anal. 18(2008), 478–510.

    Article  MathSciNet  MATH  Google Scholar 

  232. S. G. Krantz, M. M. Peloso, and C. Stoppato, Bergman kernel and projection on the unbounded Diederich–Fornæss worm domain, Annali della Scuola Normale Superiore, to appear.

    Google Scholar 

  233. S. G. Krantz, M. M. Peloso, and C. Stoppato, Completeness on the worm domain and the Müntz–Szász problem for the Bergman space, preprint.

    Google Scholar 

  234. L. Lanzani, Harmonic analysis techniques in several complex variables, Bruno Pini Mathematical Analysis Seminar 2014, 83–110, Bruno Pini Math. Anal. Semin., 2014, Univ. Bologna, Alma Mater Stud., Bologna, 2014.

    Google Scholar 

  235. L. Lanzani and E. M. Stein, Cauchy-type integrals in several complex variables. Bull. Math. Sci. 3 (2013), 241–285.

    Article  MathSciNet  MATH  Google Scholar 

  236. L. Lempert, La metrique Kobayashi et la representation des domains sur la boule, Bull. Soc. Math. France 109(1981), 427–474.

    Article  MathSciNet  MATH  Google Scholar 

  237. L. Lempert, Boundary behaviour of meromorphic functions of several variables, Acta Math. 144(1980), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  238. L. Lempert, A precise result on the boundary regularity of biholomorphic mappings, Math. Z. 193(1986), 559–579.

    Article  MathSciNet  MATH  Google Scholar 

  239. H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. 66(1957), 155–158.

    Article  MathSciNet  MATH  Google Scholar 

  240. H. Lewy, On the boundary behavior of holomorphic mappings, Acad. Naz. Lincei 35(1977), 1–8.

    Google Scholar 

  241. S.-Y. Li, On the Neumann problems for complex Monge–Ampère equations, Indiana University J. of Math, 43(1994), 1099–1122.

    Article  MATH  Google Scholar 

  242. S.-Y. Li, D. Wei, On the rigidity theorem for harmonic functions in Kähler metric of Bergman type, Sci. China Math. 53(2010), 779–790.

    Article  MathSciNet  MATH  Google Scholar 

  243. E. Ligocka, On orthogonal projections onto spaces of pluriharmonic functions and duality, Studia Math. 84(1986), 279–295.

    MathSciNet  MATH  Google Scholar 

  244. E. Ligocka, Remarks on the Bergman kernel function of a worm domain, Studia Mathematica 130(1998), 109–113.

    MathSciNet  MATH  Google Scholar 

  245. J.-L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation. (French), Inst. Hautes Études Sci. Publ. Math. 19(1964), 5–68.

    Article  MATH  Google Scholar 

  246. J.-L. Lions and J. Peetre, Propriétés d’espaces d’interpolation. (French), C. R. Acad. Sci. Paris 253(1961), 1747–1749.

    MathSciNet  MATH  Google Scholar 

  247. A. Malaspina, A brothers Riesz theorem in the theory of holomorphic functions of several complex variables, Homage to Gaetano Fichera, 273–288, Quad. Mat., 7, Dept. Math., Seconda Univ. Napoli, Caserta, 2000.

    Google Scholar 

  248. X. Ma and G. Marinescu, Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, 254. Birkhäuser Verlag, Basel, 2007. xiv+422 pp.

    Google Scholar 

  249. V. A. Menegatto, A. P. Peron, Positive definite kernels on complex spheres, J. Math. Anal. Appl. 254(2001), 219–232.

    Article  MathSciNet  MATH  Google Scholar 

  250. B. Min, thesis, Washington University, 2011.

    Google Scholar 

  251. A. Nagel, J.-P. Rosay, E. M. Stein, and S. Wainger, Estimates for the Bergman and Szegő kernels in \(\mathbb{C}^{2},\) Ann. Math. 129(1989), 113–149.

    Google Scholar 

  252. A. Nagel and W. Rudin, Local boundary behavior of bounded holomorphic functions, Can. Jour. Math. 30(1978), 583–592.

    Article  MathSciNet  MATH  Google Scholar 

  253. A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54(1984), 83–106.

    Article  MathSciNet  MATH  Google Scholar 

  254. A. Nagel and E. M. Stein, Lectures on Pseudodifferential Operators: Regularity Theorems and Applications to Nonelliptic Problems, Mathematical Notes, 24, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979.

    Google Scholar 

  255. A. Nagel, E. M. Stein, and S. Wainger, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. USA 78(1981), 6596–6599.

    Article  MathSciNet  MATH  Google Scholar 

  256. A. Nagel, E. M. Stein, and S. Wainger, Balls and metrics defined by vector fields, I. Basic properties. Acta Math. 155(1985), 103–147.

    Google Scholar 

  257. C. Nana, L -estimates of the Bergman projection in the Lie ball of \(\mathbb{C}^{n}\), J. Funct. Spaces Appl. 9(2011), 109–128.

    Article  MathSciNet  MATH  Google Scholar 

  258. Y. A. Neretin, On the separation of spectra in the analysis of Berezin kernels (Russian), Funktsional. Anal. i Prilozhen 34(2000), 49–62, 96; translation in Funct. Anal. Appl. 34(2000), 197–207.

    Google Scholar 

  259. L. Nirenberg, S. Webster, and P. Yang, Local boundary regularity of holomorphic mappings. Comm. Pure Appl. Math. 33(1980), 305–338.

    Article  MathSciNet  MATH  Google Scholar 

  260. T. Ohsawa, A remark on the completeness of the Bergman metric, Proc. Japan Acad. Ser. A Math. Sci., 57(1981), 238–240.

    Google Scholar 

  261. T. Ohsawa and K. Takegoshi, On the extension of L 2 holomorphic functions, Math. Z. 195(1987), 197–204.

    Article  MathSciNet  MATH  Google Scholar 

  262. P. Painlevé, Sur les lignes singulières des functions analytiques, Thèse, Gauthier-Villars, Paris, 1887.

    Google Scholar 

  263. R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Reprint of the 1934 original, American Mathematical Society Colloquium Publications, 19, American Mathematical Society, Providence, RI, 1987.

    Google Scholar 

  264. J. Peetre, The Berezin transform and Ha-Plitz operators, J. Operator Theory 24(1990), 165–186.

    MathSciNet  MATH  Google Scholar 

  265. D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms, I, Acta Math. 157(1986), 99–157.

    Article  MathSciNet  MATH  Google Scholar 

  266. S. Pinchuk, On the analytic continuation of holomorphic mappings, Mat. Sb. 98(140)(1975), 375–392; Mat. U.S.S.R. Sb. 27(1975), 416–435.

    Google Scholar 

  267. S. Pinchuk and S. V. Hasanov, Asymptotically holomorphic functions (Russian), Mat. Sb. 134(176) (1987), 546–555.

    MATH  Google Scholar 

  268. S. I. Pinchuk and S. I. Tsyganov, Smoothness of CR-mappings between strictly pseudoconvex hypersurfaces, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 53(1989), 1120–1129, 1136; translation in Math. USSR-Izv. 35(1990), 457–467.

    Google Scholar 

  269. I. Priwalow, Randeigenschaften Analytischer Funktionen, Deutsch Verlag der Wissenschaften, Berlin, 1956.

    Google Scholar 

  270. I. Ramadanov, Sur une propriété de la fonction de Bergman, C. R. Acad. Bulgare Sci. 20(1967), 759–762.

    MathSciNet  MATH  Google Scholar 

  271. I. Ramadanov, A characterization of the balls in \(\mathbb{C}^{n}\) by means of the Bergman kernel, C. R. Acad. Bulgare Sci. 34(1981), 927–929.

    MathSciNet  MATH  Google Scholar 

  272. E. Ramirez, Divisions problem in der komplexen analysis mit einer Anwendung auf Rand integral darstellung, Math. Ann. 184(1970), 172–187.

    Article  MathSciNet  Google Scholar 

  273. R. M. Range, A remark on bounded strictly plurisubharmonic exhaustion functions, Proc. A.M.S. 81(1981), 220–222.

    Article  MathSciNet  MATH  Google Scholar 

  274. R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  275. B. Rodin and S. Warschawski, Estimates of the Riemann mapping function near a boundary point, in Romanian-Finnish Seminar on Complex Analysis, Springer Lecture Notes, vol. 743, 1979, 349–366.

    Google Scholar 

  276. J.-P. Rosay, Sur une characterization de la boule parmi les domains de \(\mathbb{C}^{n}\) par son groupe d’automorphismes, Ann. Inst. Four. Grenoble XXIX(1979), 91–97.

    Google Scholar 

  277. L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247–320.

    Article  MathSciNet  MATH  Google Scholar 

  278. L. A. Rubel and A. Shields, The failure of interior-exterior factorization in the polydisc and the ball, Tôhoku Math. J. 24(1972), 409–413.

    Article  MathSciNet  MATH  Google Scholar 

  279. W. Rudin, Lumer’s Hardy spaces, Michigan Math. J. 24(1977), 1–5.

    Article  MathSciNet  Google Scholar 

  280. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

    MATH  Google Scholar 

  281. W. Rudin, Function Theory in the Unit Ball of \(\mathbb{C}^{n}\), Springer, Berlin, 1980.

    Book  Google Scholar 

  282. D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207(1975), 391–405.

    Article  MathSciNet  MATH  Google Scholar 

  283. S. Semmes, A generalization of Riemann mappings and geometric structures on a space of domains in \(\mathbb{C}^{n},\) Memoirs of the American Mathematical Society, 1991.

    Google Scholar 

  284. J.-P. Serre, Lie algebras and Lie groups, Lectures given at Harvard University, 1964, W. A. Benjamin, Inc., New York-Amsterdam, 1965.

    MATH  Google Scholar 

  285. G. Sheng, Singular Integrals in Several Complex Variables, Oxford University Press, 1991.

    Google Scholar 

  286. A. B. Shishkin, Spectral synthesis for systems of differential operators with constant coefficients. The duality theorem (Russian) Mat. Sb. 189(1998), no. 9, 143–160; translation in Sb. Math. 189(1998), 1423–1440.

    Google Scholar 

  287. N. Sibony, Prolongement analytique des fonctions holomorphes bornées. (French) C. R. Acad. Sci. Paris Sér. A-B 275(1972), A973–A976.

    Google Scholar 

  288. N. Sibony, Un exemple de domain pseudoconvexe regulier ou l’equation \(\overline{\partial }u = f\) n’admet pas de solution bornee pour f bornee, Invent. Math. 62(1980), 235–242.

    Article  MathSciNet  MATH  Google Scholar 

  289. Y.-T. Siu, The \(\overline{\partial }\) problem with uniform bounds on derivatives, Math. Ann. 207(1974), 163–176.

    Article  MathSciNet  MATH  Google Scholar 

  290. H. Skoda, Valeurs au bord pour les solutions de l’operateur d″ et caracterization des zeros des fonctions de la classe Nevanlinna, Bull. Soc. Math. de France 104(1976), 225–229.

    Article  MathSciNet  MATH  Google Scholar 

  291. M. Skwarczynski, The distance in the theory of pseudo-conformal transformations and the Lu Qi-King conjecture, Proc. A.M.S. 22(1969), 305–310.

    Article  MathSciNet  MATH  Google Scholar 

  292. K. T. Smith, A generalization of an inequality of Hardy and Littlewood, Canad. J. Math. 8(1956), 157–170.

    Article  MathSciNet  MATH  Google Scholar 

  293. D. C. Spencer, Overdetermined systems of linear partial differential equations, Bull. Am. Math. Soc. 75(1969), 179–239.

    Article  MathSciNet  MATH  Google Scholar 

  294. E. M. Stein, The Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, NJ, 1972.

    MATH  Google Scholar 

  295. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, with the assistance of Timothy S. Murphy, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  296. E. M. Stein, On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc. 88(1958), 4430–466.

    Article  MathSciNet  Google Scholar 

  297. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  298. E. M. Stein, The development of square functions in the work of A. Zygmund, Bull. Amer. Math. Soc. 7(1982), 359–376.

    Article  MathSciNet  MATH  Google Scholar 

  299. E. M. Stein, Singular integrals and estimates for the Cauchy–Riemann equations, Bull. Amer. Math. Soc. 79(1973), 440–445.

    Article  MathSciNet  MATH  Google Scholar 

  300. E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables, Acta Math. 103(1960), 25–62.

    Article  MathSciNet  MATH  Google Scholar 

  301. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Space, Princeton University Press, Princeton, NJ, 1971.

    MATH  Google Scholar 

  302. N. Suita and A. Yamada, On the Lu Qi-Keng conjecture, Proc. A.M.S. 59(1976), 222–224.

    Article  MathSciNet  MATH  Google Scholar 

  303. G. Szegő, Über orthogonalsysteme von Polynomen, Math. Z. 4(1919), 139–151.

    Article  MathSciNet  MATH  Google Scholar 

  304. M. Taibleson, The preservation of Lipschitz spaces under singular integral operators, Studia Math. 24(1964), 107–111.

    Article  MathSciNet  MATH  Google Scholar 

  305. Tanaka, On generalized graded Lie algebras and geometric structures, I, J. Math. Soc. Japan 19(1967), 215–254.

    Google Scholar 

  306. M. E. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, 1981.

    MATH  Google Scholar 

  307. G. B. Thomas, Calculus and Analytic Geometry, alternate ed., Addison-Wesley, Reading, MA, 1972.

    Google Scholar 

  308. F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. II, Plenum Press, New York 1982.

    MATH  Google Scholar 

  309. A. Uchiyama, A constructive proof of the Fefferman–Stein decomposition of \(BMO(\mathbb{R}^{n})\), Acta Math. 148(1982), 215–241.

    Article  MathSciNet  MATH  Google Scholar 

  310. N. T. Varopoulos, Zeros of H p functions in several complex variables,Pacific J. Math. 88(1980), 189–246.

    Google Scholar 

  311. R. Wada, Explicit formulas for the reproducing kernels of the space of harmonic polynomials in the case of classical real rank 1, Sci. Math. Jpn. 65(2007), 387–406.

    MathSciNet  MATH  Google Scholar 

  312. S. Warschawski, On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12(1961), 614–620.

    Article  MathSciNet  MATH  Google Scholar 

  313. S. Warschawski, On the boundary behavior of conformal maps, Nagoya Math. Jour. 30(1967), 83–101.

    Article  MathSciNet  MATH  Google Scholar 

  314. S. Warschawski, On Hölder continuity at the boundary in conformal maps, J. Math. Mech. 18(1968/1969), 423–427.

    Google Scholar 

  315. S. Warschawski, On boundary derivations in conformal mapping, Ann. Acad. Sci. Fenn. Ser. A I No. 420 (1968), 22 pp.

    Google Scholar 

  316. S. Webster, Biholomorphic mappings and the Bergman kernel off the diagonal, Invent. Math. 51(1979), 155–169.

    Article  MathSciNet  MATH  Google Scholar 

  317. S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71(1978), 26–28.

    Article  MathSciNet  MATH  Google Scholar 

  318. R. O. Wells, Differential Analysis on Complex Manifolds, 2nd ed., Springer Verlag, New York, 1979.

    MATH  Google Scholar 

  319. H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36(1934), 63–89.

    Article  MathSciNet  MATH  Google Scholar 

  320. E. Whittaker and G. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, London, 1935.

    MATH  Google Scholar 

  321. K. O. Widman, On the boundary behavior of solutions to a class of elliptic partial differential equations, Ark. Mat. 6(1966), 485–533.

    Article  MathSciNet  MATH  Google Scholar 

  322. J. Wiegerinck, Domains with finite dimensional Bergman space, Math. Z. 187(1984), 559–562.

    Article  MathSciNet  MATH  Google Scholar 

  323. B. Wong, Characterizations of the ball in \(\mathbb{C}^{n}\) by its automorphism group, Invent. Math. 41(1977), 253–257.

    Article  MathSciNet  Google Scholar 

  324. Z. X. Yao, A new proof for boundary behavior of the Poisson-Hua integrals on the unit ball of \(\mathbb{C}^{n}\) (Chinese), Math. Practice Theory 32(2002), 523–528.

    MathSciNet  Google Scholar 

  325. S.-T. Yau, Problem section, Seminar on Differential Geometry, S.-T. Yau ed., Annals of Math. Studies, vol. 102, Princeton University Press, 1982, 669–706.

    Google Scholar 

  326. C. Yin, A note on property of Cauchy integral on classical domains, Chinese Quart. J. Math. 13(1998), 41–43.

    MathSciNet  MATH  Google Scholar 

  327. K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005.

    MATH  Google Scholar 

  328. A. Zygmund, A remark on functions of several complex variables, Acta Sci. Math. Szeged 12(1950), 66–88.

    MathSciNet  MATH  Google Scholar 

  329. A. Zygmund, Une remarque sur un théorème de M. Kaczmarz, Math. Z. 25(1926), 297–298.

    Article  MathSciNet  MATH  Google Scholar 

  330. A. Zygmund, Trigonometric Series, 3rd. ed., Cambridge University Press, Cambridge, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Krantz, S.G. (2017). A Few Miscellaneous Topics. In: Harmonic and Complex Analysis in Several Variables. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-63231-5_11

Download citation

Publish with us

Policies and ethics