Skip to main content

Modular Electrochemical Reactivity for Photovoltaics’ Machines

  • Conference paper
  • First Online:
Book cover Nearly Zero Energy Communities (CSE 2017)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

  • 1190 Accesses

Abstract

The paper presents the idea of an extensive study, starting on the one side from the main features of molecular machines and on the other side from the applicability of Fredholm integral in electrochemistry. To this aim, the chemical reactivity could be expressed as a link between electronegativity (χ), number of exchanged/carried/transported electrons/charges (N) and the total energy of the system, dynamically evolving under potential V, respectively through the differential equation \( \chi \, = \, - \left( {\partial E/\partial N} \right)_{V} \) and/or by its integral form \( E\, = \, - \int {\chi \left( N \right)_{V} dN} \). This way, the complementary electrochemistry processes, i.e. electrode interfaces’ processes (such as deposition, corrosion, oxidation, reduction processes, etc.) and the electrolyte solution phenomena (diffusion, dispersion, recombination processes, etc.), may be either interchanged and/or separately controlled. In this context, one may employ the conceptual mix between electronegativity (chemical reactivity) driving the charge transfer in an electrochemical cell with the molecular machine’s inner conversions and light activated features, the so called modular electrochemical reactivity laws are established. Remarkably, such modular controlling of electrochemical processes applied to self-organized molecular machines may control and eventually enhance the life-cycle of photovoltaics, by designing the appropriate electro-molecular modular photovoltaics machine with the inner electrochemistry modularly controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Putz, M.V.: Chemical reactivity and electromagnetic field. In: Putz, M.V. (ed) Advances in Chemical Modeling. Nova Science Publishers, pp. 9–14 (2011)

    Google Scholar 

  2. Putz, M.V.: Electronegativity and chemical hardness: different patterns in quantum chemistry. Curr. Phys. Chem. 1, 111–139 (2011)

    Article  Google Scholar 

  3. Iczkowski, R.P., Margrave, J.L.: Electronegativity. J. Am. Chem. Soc. 83, 3547–3551 (1961)

    Article  Google Scholar 

  4. Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3808 (1978)

    Article  Google Scholar 

  5. Parr, R.G., Pearson, R.G.: Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983)

    Article  Google Scholar 

  6. March, N.H.: The ground-state energy of atomic and molecular ions and its variation with the number of elections. Struct. Bond. 80, 71–86 (1993)

    Article  Google Scholar 

  7. Putz, M.V.: Chemical Action and Chemical Bonding. J. Mol. Struct. (Thoechem) 900, 64–70 (2009)

    Article  Google Scholar 

  8. Putz, M.V., Russo, N., Sicilia, E.: Atomic radii scale and related size properties from density functional electronegativity formulation. J. Phys. Chem. A 107, 5461–5465 (2003)

    Article  Google Scholar 

  9. Putz, M.V.: Systematic formulation for electronegativity and hardness and their atomic scales within density functional softness theory. Int. J. Quant. Chem. 106, 361–389 (2006)

    Article  Google Scholar 

  10. Bieniasz, L.K.: Modeling Electroanalytical Experiments by the Integral Equation Method. Springer Verlag, Berlin (2015)

    Google Scholar 

  11. Murgulescu, I.G., Radovici, O.M.: Introducere in Chimia Fizica. Electrochimia. Bucharest: Ed. Acad (1986)

    Google Scholar 

  12. Wendt, H., Kreysa, G.: Electrochemical engineering: science and technology in chemical and other industries. Springer, Heidelberg (1999)

    Google Scholar 

  13. Jerri, A.J.: Introduction to Integral Equations with Applications. Wiley, New York (1999)

    MATH  Google Scholar 

  14. Rahman, M.: Integral Equations and their Applications. WIT Press, Southampton (2007)

    MATH  Google Scholar 

  15. Ramm, A.G.: A simple proof of the Fredholm alternative and a characterization of the fredholm operators. Am. Math. Monthly 108, 855–860 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bonciocat, N.: Electrochimie și aplicatii. Dacia Europa-Nova, Timisoara (1996)

    Google Scholar 

  17. Bonciocat, N.: Alternativa Fredholm în Electrochimie. Mediamira, Cluj-Napoca (2005)

    Google Scholar 

  18. Balzani, V., Credi, A., Venturi, M.: Molecular Devices and Machines. Concepts and Perspectives for the Nanoworld. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  19. Credi, A., Venturi, M.: Molecular machines operated by light. Cent. Eur. J. Chem. 6, 325–339 (2008)

    Google Scholar 

  20. Balzani, V., Credi, A., Venturi, M.: Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009)

    Article  Google Scholar 

  21. Balzani, V., Bergamini, G., Ceroni, P.: Light: a very peculiar reactant and product. Angew. Chem. Int. Ed. 54, 11320–11337 (2015)

    Article  Google Scholar 

  22. Putz, M.V., Tudoran, M.A., Mirica, M.C.: Bondonic electrochemistry: basic concepts and sustainable prospects. In: Putz, M.V., Mirica, M.C. (eds.) Sustainable Nanosystems Development, Properties, and Applications. IGI Global, Hershey Pasadena, USA, pp. 328–411 (2017)

    Google Scholar 

  23. Wang, M., Anghel, A.M., Marsan, B., Ha, N.L.C., Pootrakulchote, N., Zakeeruddin, S.M., Gratzel, M.: CoS supersedes Pt as efficient electro-catalyst for triodide reduction in dye-sensitized solar cells. J. Am. Ceram. Soc. 131, 15976–15977 (2009)

    Google Scholar 

  24. Wu, M., Lin, X., Wang, Y., Wang, L., Guo, W., Qi, D., Ma, T., et al.: Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. J. Am. Ceram. Soc. 134(7), 3419–3428 (2012)

    Google Scholar 

  25. Kooistra, F.B., Knol, J., Kastenberg, F., Popescu, L.M., Verhees, W.J.H., Kroon, J.M., Hummelen, J.C.: Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. Org. Lett. 9(4), 551–554 (2007)

    Article  Google Scholar 

  26. Balzani, V., Bergamini, G., Marchioni, F., Ceroni, P.: Ru(II)-bipyridine complexes in supramolecular systems, devices and machines. Coord. Chem. Rev. 250, 1254–1266 (2006)

    Article  Google Scholar 

  27. Ceroni, P., Credi, A., Venturi, M.: Light to investigate (read) and operate (write) molecular devices and machines. Chem. Soc. Rev. 43, 4068–4083 (2014)

    Article  Google Scholar 

  28. Balzani, V., Credi, A., Raymo, F.M., Stoddart, J.F.: Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000)

    Article  Google Scholar 

  29. Edwards, S.A.: The Nanotech Pioneers: Where Are They Taking Us?. Wiley-VCH, Weinheim (2006)

    Book  Google Scholar 

  30. Balzani, V., Credi, A., Venturi, M.: Molecular devices and machines. Nanotoday 2, 18–25 (2007)

    Article  Google Scholar 

  31. Raymo, F.M., Stoddart, J.F.: Organic template-directed syntheses of catenanes, rotaxanes, and knots. In: Sauvage, J.P., Dietrich-Buchecker, C. (eds) Molecular Catenanes, Rotaxanes and Knots. Wiley-VCH, Weinheim (1999)

    Google Scholar 

  32. Abendroth, J.M., Bushuyev, O.S., Weiss, P.S., Barrett, C.J.: Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015)

    Article  Google Scholar 

  33. Venturi, M., Credi, A.: Electroactive [2] catenanes. Electrochim. Acta 140, 467–475 (2014)

    Article  Google Scholar 

  34. Cao, D., Amelia, M., Klivansky, L.M., Koshkakaryan, G., Khan, S.I., Semeraro, M., Silvi, S., Venturi, M., Credi, A., Liu, Y.: Probing donor-acceptor interactions and co-conformational changes in redox active desymmetrized [2] catenanes. J. Am. Chem. Soc. 132, 1110–1122 (2010)

    Article  Google Scholar 

  35. Goodsell, D.S.: Bionanotechnology - Lessons from Nature. Wiley, New York (2004)

    Book  Google Scholar 

  36. Ballardini, R., Balzani, V., Credi, A., Gandolfi, M.T., Venturi, M.: Artificial molecular-level machines: which energy to make them work? Acc. Chem. Res. 34, 445–455 (2001)

    Article  Google Scholar 

  37. Kaifer, A.E., Gomez-Kaifer, M.: Supramolecular Electrochemistry. Wiley-VCH, Weinheim (1999)

    Book  Google Scholar 

  38. Balzani, V., Credi, A., Venturi, M.: Molecular machines working on surfaces and at interfaces. Chem. Soc. Rev. 9, 202–220 (2008)

    Google Scholar 

  39. Balzani, V., Bergamini, G., Ceroni, P.: From the photochemistry of coordination compounds to light-powered nanoscale devices and machines. Coord. Chem. Rev. 252, 2456–2469 (2008)

    Article  Google Scholar 

  40. Balzani, V., Ceroni, P., Juris, A.: Photochemistry and Photophysics. Concepts Research Applications. Wiley-VCH, Weinheim (2014)

    Google Scholar 

  41. Barber, J.: Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009)

    Article  Google Scholar 

  42. Blankenship, R.E.: Molecular Mechanism of Photosynthesis. Blackwell Science, Oxford (2002)

    Book  Google Scholar 

  43. Balzani, V., Clemente-Leon, M., Credi, A., Ferrer, B., Venturi, M., Flood, A.H., Stoddart, J.F.: Autonomous artificial nanomotor powered by sunlight. Proc. Natl. Acad. Sci. U.S.A. 103, 1178–1183 (2006)

    Article  Google Scholar 

  44. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M., Credi, A.: Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotech. 10, 70–75 (2015)

    Article  Google Scholar 

  45. Ashton, P.R., Ballardini, R., Balzani, V., Credi, A., Gandolfi, M.T., Menzer, S., Pérez-García, L., Prodi, L., Stoddart, J.F., Venturi, M., White, A.J.P., Williams, D.J.: Molecular meccano. 4. The self-assembly of [2] catenanes incorporating photoactive and electroactive #-extended systems. J. Am. Chem. Soc. 117, 11171–11197 (1995)

    Article  Google Scholar 

  46. Balzani, V., Carassiti, V.: Photochemistry of Coordination Compounds. Academic Press, London (1970)

    Google Scholar 

  47. Venturi, M., Iorga, M.I., Putz, M.V.: Molecular devices and machines: hybrid organic-inorganic structures. Curr. Org. Chem. (2017). Accepted

    Google Scholar 

  48. Irie, M.: Photochromism: memories and switches introduction. Chem. Rev. 100, 1683–1684 (2000)

    Article  Google Scholar 

  49. Brouwer, A.M., Frochot, C., Gatti, F.G., Leigh, D.A., Mottier, L., Paolucci, F., Roffia, S., Wurpel, G.W.H.: Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291, 2124–2128 (2001)

    Article  Google Scholar 

  50. Balzani, V., Credi, A., Venturi, M.: Controlled disassembling of self-assembling systems: Toward artificial molecular-level devices and machines. Proc. Natl. Acad. Sci. U.S.A. 99, 4814–4817 (2002)

    Article  Google Scholar 

  51. Balzani, V., Credi, A., Marchioni, F., Stoddart, J.F.: Artificial molecular-level machines. Dethreading-rethreading of a pseudorotaxane powered exclusively by light energy. Chem. Commun. 11, 1860–1861 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

We hereby acknowledge the research project PED123/2017 of UEFISCDI-Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Putz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Iorga, M., Mirica, M., Putz, M. (2018). Modular Electrochemical Reactivity for Photovoltaics’ Machines. In: Visa, I., Duta, A. (eds) Nearly Zero Energy Communities. CSE 2017. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-63215-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63215-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63214-8

  • Online ISBN: 978-3-319-63215-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics