Skip to main content

Direct and Large-Eddy Simulations of Biological Flows

  • Conference paper
  • First Online:

Part of the book series: ERCOFTAC Series ((ERCO,volume 24))

Abstract

The broader area of bio-fluid dynamics includes a wide array of applications from very diverse fields. The study of animal locomotion (i.e. swimming, flying) is probably one of the areas where eddy resolving approaches such as direct numerical simulations (DNS) and large-eddy simulations (LES) can have a major impact.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dickinson, M.H.: Solving the mystery of insect flight. Sci. Am. 284, 48–57 (2001)

    Article  Google Scholar 

  2. Spedding, G.R., Lissaman, P.B.S.: Technical aspects of microscale flight systems. J. Avian Biol. 29, 458–468 (1998)

    Article  Google Scholar 

  3. Baruh, H.: Analytical Dynamics. WCB/McGraw-Hill, Boston (1999)

    Google Scholar 

  4. Yang, J., Preidikman, S., Balaras, E.: A strongly coupled, embedded-boundary method for fluid? structure interactions of elastically mounted rigid bodies. J. Fluid. Struct. 24, 167–182 (2008)

    Article  Google Scholar 

  5. Vanella, M., Balaras, E.: A moving-least-squares reconstruction for embedded-boundary formulations. J. Comp. Phys. 228, 6617–6628 (2009)

    Article  MATH  Google Scholar 

  6. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comp. Phys. 209, 448–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, S., Zhang, X.: An immersed boundary method based on discrete stream function formulation for two-and three-dimensional incompressible flows. J. Comp. Phys. 230, 3479–3499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kempe, T., Frhlich, J.: An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comp. Phys. 231, 3663–3684 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, J., Balaras, E.: An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comp. Phys. 215, 12–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Balaras, E., Benocci, C., Piomelli, U.: Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34, 1111–1119 (1996)

    Article  MATH  Google Scholar 

  11. Posa, A., Balaras, E.: Model-based near-wall reconstructions for immersed-boundary methods. Theor. Comp. Fluid Dyn. 28, 473–483 (2014)

    Article  Google Scholar 

  12. Wang, S., Vanella, M., Balaras, E.: A hydrodynamic stress model for immersed boundary methods to simulate turbulence interacting with particles of arbitrary shape. J. Comput. Phys. (2016) Submitted

    Google Scholar 

  13. Xia, Z., Connington, K.W., Rapaka, S., Yue, P., Feng, J.J., Chen, S.: Flow patterns in the sedimentation of an elliptical particle. J. Fluid Mech. 625, 249–272 (2009)

    Article  MATH  Google Scholar 

  14. Vanella, M.: A fluid structure interaction strategy with application to low Reynolds number flapping flight. Ph.D. Thesis. Department of Mechanical Engineering, University of Maryland (2010)

    Google Scholar 

  15. Sun, M., Xiong, Y.: Dynamic flight stability of a hovering bumblebee. J. Exp. Biol. 208, 447–459 (2005)

    Article  Google Scholar 

  16. Taylor, G.K., Thomas, A.L.R.: Dynamic flight stability in the desert locust Schistocerca gregaria. J. Exp. Biol. 206, 2803–2829 (2003)

    Article  Google Scholar 

  17. Wu, J.H., Zhang, Y.L., Sun, M.: Hovering of model insects: simulation by coupling equations of motion with Navier–Stokes equations. J. Exp. Biol. 212, 3313–3329 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Vanella , S. Wang or E. Balaras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Vanella, M., Wang, S., Balaras, E. (2018). Direct and Large-Eddy Simulations of Biological Flows. In: Grigoriadis, D., Geurts, B., Kuerten, H., Fröhlich, J., Armenio, V. (eds) Direct and Large-Eddy Simulation X. ERCOFTAC Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-63212-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63212-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63211-7

  • Online ISBN: 978-3-319-63212-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics