Skip to main content

The Application of Combustion LES Within Industry

  • Conference paper
  • First Online:
Book cover Direct and Large-Eddy Simulation X

Part of the book series: ERCOFTAC Series ((ERCO,volume 24))

Abstract

Within this paper the combustion CFD approach which is followed within Rolls-Royce is described. Combustion CFD computations are based on the in-house code PRECISE-UNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones, W.P., Marquis, A.J., Prasad, V.N.: LES of a turbulent premixed swirl burning using the Eulerean stochastic field method. Combust. Flame 159(10), 30793095 (2012)

    Article  Google Scholar 

  2. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  3. Karki, K.C., Patankar, S.V.: Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J. 27(9), 1167–1174 (1989)

    Article  Google Scholar 

  4. Klapdor, V., Pyliouras, S., Eggels, R., Janicka, J.: Towards Simulation of combustor turbine interaction in an integrated simulation, ASME Paper GT 2010-22933. In: Proceedings of ASME Turbo Expo, Glasgow, UK (2010)

    Google Scholar 

  5. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  6. Stichting Dolfyn. https://www.dolfyn.net/

  7. HYPRE: Users manual, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory (2006)

    Google Scholar 

  8. Notay, Y.: Aggregation-based algebraic multigrid for convection-diffusion equations. SIAM J. Sci. Comput. 34, A2288–A2316 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geigle, K.P., Khler, M.: OLoughlin, W., Meier, W.: Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations. Proc. Combust. Inst. 35(3), 3373–3380 (2014)

    Article  Google Scholar 

  10. Geigle, K.P., Hadef, R., Meier, W.: Soot formation and flame characterization of an aero-engine model combustor burning ethylene at elevated pressure. J. Eng. Gas Turbines Power 136(2), 021505 (2014)

    Article  Google Scholar 

  11. Meier, U., Freitag, S., Heinze, J., Lange, L., Magens, E., Schroll, M., Willert, C., Hassa, C., Bagchi, I., Lazik, W., Whiteman, M.: Characterization of lean burn module air blast pilot injector with laser techniques. J. Eng. Gas Turbines Power 135(12), 121508 (2013)

    Article  Google Scholar 

  12. Broy, M.: Software engineering - from auxiliary to key technologies. In: Broy, M., Dener, E. (eds.) Software Pioneers, pp. 10–13. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Coupland, J., Priddin, C.H.: Modeling the flow and combustion in a production gas turbine combustor. Turbul. Shear Flow 5, 310–323 (1987)

    Article  Google Scholar 

  14. Anand, M.S., Zhu, J., Connor, C., Razdan, M.K.: Combustor flow analysis using an advanced finite-volume design system, ASME Paper 99-GT-273. In: 44th International Gas Turbine and Aerospace Congress and Exhibition, Indianapolis, Indiana, 7–10 June (1999)

    Google Scholar 

  15. Anand, M.S., Eggels, R., Staufer, M., Zedda, M., Zhu, J.: An advanced unstructured grid finite volume design system for gas turbine combustion analysis, ASME Paper GTINDIA 2013-3537 (2013)

    Google Scholar 

  16. Valino, L.: A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 60, 157–172 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Part of the presented work and experimental data has been achieved within the 7th framework project “Fuel Injector Research for Sustainable Transport” (FIRST), funded by the European Commission under contract FP7-AAT-2010-RTD-1. Furthermore, the work has been done in cooperation of the global combustion method team: Max Staufer and Torsten Voigt (Rolls-Royce Deutschland), Marco Zedda, Chris Goddard and Simon Stow (Rolls-Royce plc, Derby, UK), M.S. Anand, Jiang Zhu and Cris Nastasa (Rolls-Royce Corporation, Indianapolis, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruud L. G. M. Eggels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Eggels, R.L.G.M. (2018). The Application of Combustion LES Within Industry. In: Grigoriadis, D., Geurts, B., Kuerten, H., Fröhlich, J., Armenio, V. (eds) Direct and Large-Eddy Simulation X. ERCOFTAC Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-63212-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63212-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63211-7

  • Online ISBN: 978-3-319-63212-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics