Hybrid Ranking Method for E-Learning Platform Selection: A Flexible Approach

  • Soraya ChachouaEmail author
  • Nouredine TamaniEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 739)


E-Learning platforms comparison helps users select the most suitable platform according to their individual pedagogical needs and objectives. However, from decision support perspective, selecting the optimal platform in terms of tools and services that meet user’s requirements still remain difficult to achieve. Thus, we investigate in this paper an e-Learning evaluation method based on a symbolic approach using preference operators and Qualitative Weight and Sum method (QWS) [1] providing a total order among the considered e-Learning systems. However, even the totality ensured by the preference operators we developed, they are still not sufficient from decision making perspective, since they can return a ranking in which several alternatives are all equally and indistinguishably (un)satisfactory. Therefore, we combine our symbolic approach with a flexible ranking method based on linguistic quantifiers and fuzzy quantified propositions along with two new parameters for quality assessment refinement, called least satisfactory proportion and greatest satisfactory proportion, denoted by lsp and gsp respectively, to be able to discriminate among alternatives evaluated as equal. The hybrid method obtained can significantly refine the ranking providing users with valuable information to help them make decisions.


  1. 1.
    Stufflebeam, D.L.: Empowerment evaluation, objectivist evaluation, and evaluation standards: where the future of evaluation should not go and where it needs to go. Eval. Pract. 15, 321–338 (1994)CrossRefGoogle Scholar
  2. 2.
    Venkataraman, S., Sivakumar, S.: Engaging students in group based learning through e-learning techniques in higher education system. Int. J. Emerg. Trends Sci. Technol. 2, 1741–1746 (2015)Google Scholar
  3. 3.
    Bañados, E.: A blended-learning pedagogical model for teaching and learning efl successfully through an online interactive multimedia environment. Calico J. 23, 533–550 (2013)Google Scholar
  4. 4.
    Colace, F., Santo, M.D., Pietrosanto, A.: Evaluation models for e-learning platform: an ahp approach (2006)Google Scholar
  5. 5.
    Ubell, R.: Engineers turn to E-Learning. IEEE Spectr. 37, 59–61 (2000)CrossRefGoogle Scholar
  6. 6.
    Schneider, A., Albers, P., Mattheis, V.M.: E-Learning en urologie: Mise en oeuvre de l’apprentissage et l’enseignement Platform CASUS - Avez patients virtuels conduire a une amélioration des résultats d’apprentissage d’une étude randomisée chez les étudiants, vol. 94. Karger AG, Basel (2015)Google Scholar
  7. 7.
    Hannan, T.M.: Politique-en-pratique pour la polyarthrite rhumatoide: étude randomisée d’essai et la cohorte controlée de e-learning visant une meilleure gestion de la physiothérapie (2013)Google Scholar
  8. 8.
    Stoffregena, J., Pawlowski, J.M., Pirkkalainen, H.: A barrier framework for open e-learning in public administrations (2015)Google Scholar
  9. 9.
    García, F.B., Jorge, A.H.: Evaluating e-learning platforms through scorm specifications. In: IADIS Virtual Multi Conference on Computer Science and Information Systems (MCCSIS 2006), IADIS (2006)Google Scholar
  10. 10.
    Britain, S., Liber, O.: A framework for pedagogical evaluation of virtual learning environments (2004)Google Scholar
  11. 11.
    Laurillard, D.: Rethinking University Teaching: A Conversational Framework for the Effective Use of Learning Technologies. Routledge, London (2013)Google Scholar
  12. 12.
    Liber, O., Olivier, B., Britain, S.: The toomol project: supporting a personalised and conversational approach to learning. Comput. Educ. 34, 327–333 (2000)CrossRefGoogle Scholar
  13. 13.
    Graf, S., List, B.: An evaluation of open source e-learning platforms stressing adaptation issues. In: Proceedings of the 5th IEEE International Conference on Advanced Learning Technologies, ICALT 2005, pp. 163–165, IEEE Computer Press (2005)Google Scholar
  14. 14.
    Hamtini, T.M., Fakhouri, H.N.: Evaluation of open-source e-learning platforms based on the qualitative weight and sum approach and analytic hierarchy process. Technical report (2012). Accessed 21 May 2013
  15. 15.
    Maruthur, N.M., Joy, S.M., Dolan, J.G., Shihab, H.M., Singh, S.: Use of the analytic hierarchy process for medication decision-making in type 2 diabetes. PloS One 10, e0126625 (2015)CrossRefGoogle Scholar
  16. 16.
    Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHGoogle Scholar
  17. 17.
    Chachoua, S., Tamani, N., Malki, J., Estraillier, P.: e-learning platform ranking method using a symbolic approach based on preference relations. In: Proceedings of the 8th International Conference on Computer Supported Education, pp. 114–122 (2016)Google Scholar
  18. 18.
    Atthirawong, W., MacCarthy, B.: An application of the analytical hierarchy process to international location decision-making. In: Gregory, M. (ed.) Proceedings of The 7th Annual Cambridge International Manufacturing Symposium: Restructuring Global Manufacturing, pp. 1–18. University of Cambridge, Cambridge (2002)Google Scholar
  19. 19.
    Lebrun, M., Docq, F., Smidts, D., et al.: Claroline, une plate-forme d’enseignement et d’apprentissage pour stimuler le développement pédagogique des enseignants et la qualité des enseignements: premières approches. In: Colloque de l’AIPU, Montpellier (2008)Google Scholar
  20. 20.
    Reiter, S., Kohlbecker, J., Watrinet, M.L.: Anaxagora: a step forward in e-learning. In: ECEL2006-5th European Conference on elearning: ECEL2006, p. 291. Academic Conferences Limited (2006)Google Scholar
  21. 21.
    Dogbe Semanou, D.A.K., Durand, A., Leproust, M., Vanderstichel, H.: Etude comparative de plates-formes de formation à distance. le cadre du Projet@ 2L Octobre (2007)Google Scholar
  22. 22.
    Laforcade, C.P., Oubahssi, L.: Étude comparative de plates-formes de formation à distance (2014)Google Scholar
  23. 23.
    Greco, S., Pereira, R.A.M., Squillante, M., Yager, R.R.: Preferences and Decisions: Models and Application, vol. 257. Springer, Heidelberg (2010)Google Scholar
  24. 24.
    Bouchon-Meunier, B., Dubois, D., Godo, L., Prade, H.: Fuzzy set and possibility theory in approximate and plausible reasoning. In: Bezdek, J.C., Dubois, D., Prade, H. (eds.) Fuzzy Sets in Approximate Reasoning and Information Systems. The Handbook of Fuzzy Sets, pp. 27–31. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  25. 25.
    Liétard, L.: Contribution à l’interrogation flexible de bases de données: Etude des propositions quantifiées floues. Ph.D. thesis (1995)Google Scholar
  26. 26.
    Yager, R.R.: General multiple-objective decision functions and linguistically quantified statements. Int. J. Man Mach. Stud. 21, 389–400 (1984)CrossRefzbMATHGoogle Scholar
  27. 27.
    Yager, R.R.: Fuzzy quotient operators for fuzzy relational data bases. Fuzzy Engineering toward Human Friendly Systems 1, 13–15 (1991)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.L3i LaboratoryUniversity of La RochelleLa RochelleFrance

Personalised recommendations