History of Czech Vegetation Since the Late Pleistocene

Part of the Plant and Vegetation book series (PAVE, volume 14)


A long-term perspective is a crucial dimension for understanding the present-day composition and structure of the Czech flora and vegetation. We outline processes that were important for the development of the present-day diversity of flora and vegetation including extinctions of taxa and ecological mechanisms operating within glacial-interglacial cycles. Further, we present the history of vegetation during the key stages in the glacial and postglacial periods. First, we outline the pattern in the vegetation during the last glacial, including a discussion of the existence of refugia for trees. We further describe the changes in vegetation during the Late Glacial, which were mostly the results of abrupt climatic events. We also present a new synthesis of the Holocene regional development in vegetation based on a Landscape Reconstruction Algorithm, which results in different regional vegetation trajectories and three main phases in the development of vegetation. Finally, we give some examples of the histories of local vegetation at several sites mainly based on plant macrofossils.



We thank all the contributors to the Czech Quaternary Pollen Database, which made this synthesis possible, Jiří Sádlo for fruitful ideas for this study, Milan Chytrý, Anna Potůčková and Pavla Žáčková for providing photos, Milan Chytrý for valuable comments on an earlier version of the manuscript and Tony Dixon for language editing. We also thank the Czech Science Foundation for financial support (projects no. 16-06915S and 16-10100S).


  1. Abraham V (2006) Přirozená vegetace a její změny v důsledku kolonizace a lesnického hospodaření v Českém Švýcarsku [The natural vegetation of Bohemian Switzerland and its changes as an impact of habitation and forest management]. MSc thesis, Charles University, PrahaGoogle Scholar
  2. Abraham V, Pokorný P (2008) Vegetační změny v Českém Švýcarsku jako důsledek lesnického hospodaření – pokus o kvantitativní rekonstrukci [Vegetation changes in Czech Switzerland as a result of forestry management – an attempt at quantitative reconstruction on the basis of pollen analyses and historical sources]. In: Beneš J, Pokorný P (eds) Bioarcheologie v České republice [Bioarchaeology in the Czech Republic]. Jihočeská Univerzita, PřF; Archeologický ústav AV ČR, Praha, pp 443–470Google Scholar
  3. Abraham V, Oušková V, Kuneš P (2014) Present-day vegetation helps quantifying past land cover in selected regions of the Czech Republic. PLoS One 9:e100117PubMedPubMedCentralCrossRefGoogle Scholar
  4. Abraham V, Kuneš P, Petr L, Svitavská-Svobodová H, Kozáková R, Jamrichová E, Švarcová MG, Pokorný P (2016) A pollen-based quantitative reconstruction of the Holocene vegetation updates a perspective on the natural vegetation in the Czech Republic and Slovakia. Preslia 88:409–434Google Scholar
  5. Abraham V, Novák J, Houfková P, Petr L, Dudová L (2017) A Landscape Reconstruction Algorithm and pedoanthracological data reveal late holocene woodland history in the lowlands of the NE Czech Republic. Review of Palaeobotany and Palynology 244:54–64Google Scholar
  6. Adámek M, Bobek P, Hadincová V, Wild J, Kopecký M (2015) Forest fires within a temperate landscape: a decadal and millennial perspective from a sandstone region in Central Europe. Forest Ecology and Management 336:81–90CrossRefGoogle Scholar
  7. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–486CrossRefGoogle Scholar
  8. Ammann B (2000) Biotic responses to rapid climatic changes: introduction to a multidisciplinary study of the Younger Dryas and minor oscillations on an altitudinal transect in the Swiss Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 159:191–201CrossRefGoogle Scholar
  9. Ammann B, Birks HJB, Brooks SJ, Eicher U, von Grafenstein U, Hofmann W, Lemdahl G, Schwander J, Tobolski K, Wick L (2000) Quantification of biotic responses to rapid climatic changes around the Younger Dryas – a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 159:313–347CrossRefGoogle Scholar
  10. Andersen ST (1994) History of the terrestrial environment in the quaternary of Denmark. Bulletin of the Geological Society of Denmark 41:219–228Google Scholar
  11. Andersen KK, Azuma N, Barnola J-M, Bigler M, Biscaye P, Caillon N, Chappellaz J, Clausen HB, Dahl-Jensen D, … White JWC (2004) High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature 431:147–151Google Scholar
  12. Antoine P, Rousseau D-D, Degeai J-P, Moine O, Lagroix F, Kreutzer S, Fuchs M, Hatté C, Gauthier C, ... Lisá L (2013) High-resolution record of the environmental response to climatic variations during the last interglacial–glacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Věstonice (Czech Republic). Quaternary Science Reviews 67:17–38Google Scholar
  13. Barron E, Pollard D (2002) High-resolution climate simulations of oxygen isotope stage 3 in Europe. Quaternary Research 58:296–309CrossRefGoogle Scholar
  14. Beresford-Jones D, Taylor S, Paine C, Pryor A, Svoboda J, Jones M (2011) Rapid climate change in the upper Palaeolithic: the record of charcoal conifer rings from the Gravettian site of Dolní Vĕstonice, Czech Republic. Quaternary Science Reviews 30:1948–1964CrossRefGoogle Scholar
  15. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10:297–317CrossRefGoogle Scholar
  16. Bešta T, Šafránková J, Pouzar M, Novák J, Nováková K (2009) Late Pleistocene–early Holocene transition recorded in the sediments of a former shallow lake in the Czech Republic. Hydrobiologia 631:107–120CrossRefGoogle Scholar
  17. Birks HJB (1986) Late-Quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to north-west Europe. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 3–65Google Scholar
  18. Birks HJB (2005) Mind the gap: how open were European primeval forests? Trends in Ecology and Evolution 20:154–156PubMedCrossRefGoogle Scholar
  19. Birks HH (2013) Plant macrofossil introduction. In: Elias SA, Mock CJ (eds) Encyclopedia of Quaternary science, 2nd edn. Elsevier, Amsterdam, pp 593–612Google Scholar
  20. Birks HJB, Birks HH (1980) Quaternary palaeoecology. Blackburn Press, New JerseyGoogle Scholar
  21. Birks HJB, Seppä H (2010) Late-Quaternary palaeoclimatic research in Fennoscandia – a historical review. Boreas 39:655–673Google Scholar
  22. Birks HJ, Willis K (2008) Alpines, trees, and refugia in Europe. Plant Ecology & Diversity 1:147–160CrossRefGoogle Scholar
  23. Blockley SPE, Lane CS, Hardiman M, Rasmussen SO, Seierstad IK, Steffensen JP, Svensson A, Lotter AF, Turney CSM, Bronk Ramsey C (2012) Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k. Quaternary Science Reviews 36:2–10CrossRefGoogle Scholar
  24. Blytt A (1882) Die Theorie der wechselnden kontinentalen und insularen Klimate. Botanische Jahrbücher 2:1–50Google Scholar
  25. Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266CrossRefGoogle Scholar
  26. Bradshaw RHW, Lindbladh M (2005) Regional spread and stand-scale establishment of Fagus sylvatica and Picea abies in Scandinavia. Ecology 86:1679–1686CrossRefGoogle Scholar
  27. Bradshaw RHW, Hannon GE, Lister AM (2003) A long-term perspective on ungulate-vegetation interactions. Forest Ecology and Management 181:267–280CrossRefGoogle Scholar
  28. Břízová E (1994) Vegetation of Holsteinian interglacial in Stonava-Horní Suchá (Ostrava region). Anthropozoikum 21:29–56Google Scholar
  29. Břízová E (2009) Quaternary environmental history of the Čejčské Lake (S. Moravia, Czech Republic). Bulletin of Geosciences 84:637–652CrossRefGoogle Scholar
  30. Chytrý M, Danihelka J, Kubešová S, Lustyk P, Ermakov N, Hájek M, Hájková P, Kočí M, Otýpková Z, ... Pišút I (2008) Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecology 196:61–83Google Scholar
  31. Chytrý M, Danihelka J, Horsák M, Kočí M, Kubešová S, Lososová Z, Otýpková Z, Tichý L, Martynenko VB, Baisheva EZ (2010) Modern analogues from the Southern Urals provide insights into biodiversity change in the early Holocene forests of Central Europe. Journal of Biogeography 37:767–780CrossRefGoogle Scholar
  32. Cui Q-Y, Gaillard M-J, Lemdahl G, Stenberg L, Sugita S, Zernova G (2014) Historical land-use and landscape change in southern Sweden and implications for present and future biodiversity. Ecology and Evolution 4:3555–3570Google Scholar
  33. de Lafontaine G, Amasifuen Guerra CA, Ducousso A, Petit RJ (2014) Cryptic no more: soil macrofossils uncover Pleistocene forest microrefugia within a periglacial desert. New Phytologist 204:715–729PubMedCrossRefGoogle Scholar
  34. Divišová M, Šída P (2015) Plant use in the mesolithic period. Archaeobotanical data from the Czech Republic in a European context – a review. Interdisciplinaria Archaeologica 6:95–106CrossRefGoogle Scholar
  35. Dobrovolny L (2016) Density and spatial distribution of beech (Fagus sylvatica L.) regeneration in Norway spruce (Picea abies (L.) Karsten) stands in the central part of the Czech Republic. iForest – Biogeosciences and Forestry 9:666–672Google Scholar
  36. Dreslerová D (2011) Přírodní prostředí a pravěké zemědělské společnosti (na území Čech) [Natural environment and prehistoric farmer societies in Bohemia]. PhD thesis, Charles University, PrahaGoogle Scholar
  37. Dreslerová D (2012) Human response to potential robust climate change around 5500 cal BP in the territory of Bohemia (Czech Republic). Interdisciplinaria Archaeologica 3:43–56Google Scholar
  38. Dreslerová D, Kočár P (2012) Trends in cereal cultivation in the Czech Republic from the Neolithic to the Migration period (5500 B.C.–A.D. 580). Vegetation History and Archaeobotany 22:257–268Google Scholar
  39. Dreslerová D, Waldhauser J, Abraham V, Kočár P, Meduna P, Sádlo J (2013) Bezdězsko–Dokesko v pravěku a laténské sídliště v Oknech [The Bezděz–Doksy region (Northern Bohemia) in prehistory and the La Tène settlement at Okna]. Archeologické rozhledy 65:535–573Google Scholar
  40. Dudová L, Hájek M, Hájková P (2010) The origin and vegetation development of the Rejvíz pine bog and the history of the surrounding landscape during the Holocene. Preslia 82:223–246Google Scholar
  41. Dudová L, Hájková P, Buchtová H, Opravilová V (2013) Formation, succession and landscape history of central-European summit raised bogs: a multiproxy study from the Hrubý Jeseník Mountains. The Holocene 23:230–242CrossRefGoogle Scholar
  42. Dudová L, Hájková P, Opravilová V, Hájek M (2014) Holocene history and environmental reconstruction of a Hercynian mire and surrounding mountain landscape based on multiple proxies. Quaternary Research 82:107–120CrossRefGoogle Scholar
  43. Emmer IM, Fanta J, Kobus AT, Kooijman A, Sevink J (1998) Reversing borealization as a means to restore biodiversity in central-European mountain forests – an example from the Krkonoše Mountains, Czech Republic. Biodiversity and Conservation 7:229–247CrossRefGoogle Scholar
  44. Engel Z, Nývlt D, Křížek M, Treml V, Jankovská V, Lisá L (2010) Sedimentary evidence of landscape and climate history since the end of MIS 3 in the Krkonoše Mountains, Czech Republic. Quaternary Science Reviews 29:913–927CrossRefGoogle Scholar
  45. Firbas F (1949) Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. Allgemeine Waldgeschichte. Gustav Fischer, JenaGoogle Scholar
  46. Frenzel B (1968) Pleistocene vegetation of Northern Eurasia – recent vegetation of Northern Eurasia resulted from a relentless contest between steppe and forest. Science 161:637–649Google Scholar
  47. Giesecke T, Bennett KD, Birks HJB, Bjune AE, Bozilova E, Feurdean A, Finsinger W, Froyd C, Pokorný P, Rösch M (2011) The pace of Holocene vegetation change – testing for synchronous developments. Quaternary Science Reviews 30:2805–2814CrossRefGoogle Scholar
  48. Gradmann R (1933) Die Steppenheidetheorie. Geographische Zeitschrift 39:265–278Google Scholar
  49. Hahne J (1992) Untersuchungen zur spät- und postglazialen Vegetationsgeschichte im nordöstlichen Bayern (Bayerisches Vogtland, Fichtelgebirge, Steinwald). Flora 187:169–200Google Scholar
  50. Hájek M, Hájková P (2011) Vegetace slatinišť, přechodových rašelinišť a vrchovištních šlenků (Scheuchzerio palustris-Caricetea nigrae) [Vegetation of fens, transitional mires and bog hollows (Scheuchzerio palustris-Caricetea nigrae)]. In: Chytrý M (ed) Vegetace České republiky 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic 3. Aquatic and wetland vegetation]. Academia, Praha, pp 614–704Google Scholar
  51. Helmens KF (2014) The last interglacial–glacial cycle (MIS 5–2) re-examined based on long proxy records from central and northern Europe. Quaternary Science Reviews 86:115–143CrossRefGoogle Scholar
  52. Horsák M, Chytrý M, Pokryszko BM, Danihelka J, Ermakov N, Hájek M, Hájková P, Kintrová K, Kočí M, ... Valachovič M (2010) Habitats of relict terrestrial snails in southern Siberia: lessons for the reconstruction of palaeoenvironments of full-glacial Europe. Journal of Biogeography 37:1450–1462Google Scholar
  53. Hošek J, Pokorný P, Kubovčík V, Horáček I, Žáčková P, Kadlec J, Rojik F, Lisá L, Bučkuliaková S (2014) Late glacial climatic and environmental changes in eastern-central Europe: correlation of multiple biotic and abiotic proxies from the Lake Švarcenberk, Czech Republic. Palaeogeography, Palaeoclimatology, Palaeoecology 396:155–172CrossRefGoogle Scholar
  54. Hultberg T, Gaillard M-J, Grundmann B, Lindbladh M (2015) Reconstruction of past landscape openness using the Landscape Reconstruction Algorithm (LRA) applied on three local pollen sites in a southern Swedish biodiversity hotspot. Vegetation History and Archaeobotany 24:253–266CrossRefGoogle Scholar
  55. Huntley B (1993) Species-richness in north-temperate zone forests. Journal of Biogeography 20:163–180CrossRefGoogle Scholar
  56. Huntley B, Alfano MJ, Allen JRM, Pollard D, Tzedakis PC, de Beaulieu JL, Gruger E, Watts B (2003) European vegetation during marine oxygen isotope stage-3. Quaternary Research 59:195–212CrossRefGoogle Scholar
  57. Iversen J (1944) Viscum, Hederaand Ilex as climate indicators. Geologiska Föreningen i Stockholm Förhandlingar 66:463–483Google Scholar
  58. Iversen J (1960) Problems of the early post-glacial forest development in Denmark. Danmarks Geologiske Undersøgelse IV række 4:1–32Google Scholar
  59. Jäger KD (1969) Climatic character and oscillations of the subboreal period in the dry regions of the central European highlands. In: Wright HE Jr (ed) Quarternary geology and climate. National Academy of Sciences, Washington, DC, pp 38–42Google Scholar
  60. Jamrichová E, Szabó P, Hédl R, Kuneš P, Bobek P, Pelánková B (2013) Continuity and change in the vegetation of a Central European oakwood. The Holocene 23:46–56CrossRefGoogle Scholar
  61. Jankovská V (1970) Ergebnisse der Pollen- und Grossrestanalyse des Moors “Velanská cesta” in Südböhmen. Folia Geobotanica et Phytotaxonomica 5:43–60CrossRefGoogle Scholar
  62. Jankovská V (1971) The development of vegetation on the western slopes of the Bohemian-Moravian uplands during the late Holocene period: a study based on pollen and macroscopic analyses. Folia Geobotanica et Phytotaxonomica 6:281–302CrossRefGoogle Scholar
  63. Jankovská V (2006) Late Glacial and Holocene history of Plešné Lake and its surrounding landscape based on pollen and palaeoalgological analyses. Biologia 61:371–385CrossRefGoogle Scholar
  64. Jankovská V (2008) Slovak and Moravian Carpathians in the last glacial period – an island of “Siberian taiga” in Europe. Phytopedon 7:122–130Google Scholar
  65. Jankovská V, Pokorný P (2008) Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80:307–324Google Scholar
  66. Jankovská V, Pokorný P (2013) Reevaluation of the palaeoenvironmental record of the former Komořanské jezero lake: late-glacial and Holocene palaeolimnology and vegetation development in north-western Bohemia, Czech Republic. Preslia 85:265–287Google Scholar
  67. Jankovská V, Rybníček K (1988) The genus Carex in the late glacial and Holocene of Czechoslovakia. Aquatic Botany 30:23–37CrossRefGoogle Scholar
  68. Jeník J (1980) Struktura slatinné olšiny (Carici elongatae-Alnetum) v regresivní fázi [Structure of an alder carr (Carici elongatae-Alnetum) in a regression phase]. In: Zborník referátov z 3. zjazdu Slovenskej botanickej spoločnosti při SAV. Slovenská botanická spoločnosť, Zvolen, pp 53–57Google Scholar
  69. Juřičková L, Horáčková J, Jansová A, Ložek V (2013) Mollusc succession of a prehistoric settlement area during the Holocene: a case study of the České středohoří Mountains (Czech Republic). The Holocene 23:1811–1823CrossRefGoogle Scholar
  70. Juřičková L, Horáčková J, Ložek V (2014a) Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quaternary Research 82:222–228CrossRefGoogle Scholar
  71. Juřičková L, Horsák M, Horáčková J, Abraham V, Ložek V (2014b) Patterns of land-snail succession in Central Europe over the last 15,000 years: main changes along environmental, spatial and temporal gradients. Quaternary Science Reviews 93:155–166CrossRefGoogle Scholar
  72. Kajtoch Ł, Cieślak E, Varga Z, Paul W, Mazur MA, Sramkó G, Kubisz D (2016) Phylogeographic patterns of steppe species in eastern Central Europe: a review and the implications for conservation. Biodiversity and Conservation 25:2309–2339CrossRefGoogle Scholar
  73. Knipping M (1997) Pollenanalytische Untersuchungen zur Siedlungsgeschichte des Oberpfälzer Waldes. Telma 27:61–74Google Scholar
  74. Kočár P, Čech P, Kozáková R, Kočárová R (2010) Environment and economy of the early medieval settlement in Žatec. Interdisciplinaria Archaeologica 1:45–60CrossRefGoogle Scholar
  75. Kočár P, Pokorná A, Komárková V (2015) Synantropní flóra pravěkých sídlišť ve světle makrozbytkové analýzy [Anthropogenic flora of prehistoric settlements according to macro-remain analysis]. Zprávy České botanické společnosti 50:301–314Google Scholar
  76. Kozáková R, Pokorný P, Havrda J, Jankovská V (2009) The potential of pollen analyses from urban deposits: multivariate statistical analysis of a data set from the medieval city of Prague, Czech Republic. Vegetation History and Archaeobotany 18:477–488CrossRefGoogle Scholar
  77. Kozáková R, Šamonil P, Kuneš P, Novák J, Kočár P, Kočárová R (2011) Contrasting local and regional Holocene histories of Abies alba in the Czech Republic in relation to human impact: evidence from forestry, pollen and anthracological data. The Holocene 21:431–444CrossRefGoogle Scholar
  78. Kozáková R, Pokorný P, Mařík J, Čulíková V, Boháčová I, Pokorná A (2014) Early to high medieval colonization and alluvial landscape transformation of the Labe valley (Czech Republic): evaluation of archaeological, pollen and macrofossil evidence. Vegetation History and Archaeobotany 23:701–718CrossRefGoogle Scholar
  79. Kozáková R, Pokorný P, Peša V, Danielisová A, Čuláková K, Svitavská-Svobodová H (2015) Prehistoric human impact in the mountains of Bohemia. Do pollen and archaeological data support the traditional scenario of a prehistoric “wilderness”? Review of Palaeobotany and Palynology 220:29–43Google Scholar
  80. Kuneš P, Pokorný P, Jankovská V (2007) Post-glacial vegetation development in sandstone areas of the Czech Republic. In: Härtel H, Cílek V, Herben T, Jackson A, Williams R (eds) Sandstone landscapes. Academia, Praha, pp 244–257Google Scholar
  81. Kuneš P, Pelánková B, Chytrý M, Jankovská V, Pokorný P, Petr L (2008a) Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. Journal of Biogeography 35:2223–2236Google Scholar
  82. Kuneš P, Pokorný P, Šída P (2008b) Detection of the impact of early Holocene hunter-gatherers on vegetation in the Czech Republic, using multivariate analysis of pollen data. Vegetation History and Archaeobotany 17:269–287CrossRefGoogle Scholar
  83. Kuneš P, Abraham V, Kovářík O, Kopecký M, PALYCZ contributors (2009) Czech Quaternary Palynological Database – PALYCZ: review and basic statistics of the data. Preslia 81:209–238Google Scholar
  84. Kuneš P, Odgaard BV, Gaillard M (2011) Soil phosphorus as a control of productivity and openness in temperate interglacial forest ecosystems. Journal of Biogeography 38:2150–2164CrossRefGoogle Scholar
  85. Kuneš P, Kjærsgaard Sørensen M, Buylaert J-P, Murray AS, Houmark-Nielsen M, Odgaard BV (2013) A new middle Pleistocene interglacial record from Denmark: chronostratigraphic correlation, palaeovegetation and fire dynamics. Boreas 42:596–612CrossRefGoogle Scholar
  86. Kuneš P, Svobodová-Svitavská H, Kolář J, Hajnalová M, Abraham V, Macek M, Tkáč P, Szabó P (2015) The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quaternary Science Reviews 116:15–27PubMedPubMedCentralCrossRefGoogle Scholar
  87. Küster H (1997) The role of farming in the postglacial expansion of beech and hornbeam in the oak woodlands of central Europe. The Holocene 7:239–242CrossRefGoogle Scholar
  88. Lang G (1994) Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. G. Fischer, JenaGoogle Scholar
  89. Lange E, Christl A, Joosten H (2005) Ein Pollendiagramm aus der Mothäuser Heide im oberen Erzgebirge unweit des Grenzüberganges Reitzenhain. In: Sachenbacher P, Einicke R, Beier H-J (eds) Kirche und geistiges Leben im Prozess des mittelalterlichen Landesausbaus in Ostthüringen/Westsachsen. Beier & Beran, Langenweissbach, pp 153–169Google Scholar
  90. Latałowa M, van der Knaap WO (2006) Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Quaternary Science Reviews 25:2780–2805CrossRefGoogle Scholar
  91. Lewandowski A (1997) Genetic relationships between European and Siberian larch, Larix spp. (Pinaceae), studied by allozymes. Is the Polish larch a hybrid between these two species? Plant Systematics and Evolution 204:65–73CrossRefGoogle Scholar
  92. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003Google Scholar
  93. Lowe JJ, Ammann B, Birks HH, Björck S, Coope GR, Cwynar L, de Beaulieu JL, Mott RJ, Peteet DM, Walker MJC (1994) Climatic changes in areas adjacent to the North Atlantic during the last glacial-interglacial transition (14–9 ka BP): a contribution to IGCP-253. Quaternary Science Reviews 9:185–198Google Scholar
  94. Ložek V (1964) Quartärmollusken der Tschechoslowakei. Nakladatelství Československé akademie věd, PrahaGoogle Scholar
  95. Ložek V (2007) Zrcadlo minulosti. Česká a slovenská krajina v kvartéru [Mirror of the past. Czech and Slovak landscape in the Quaternary]. Dokořán, PrahaGoogle Scholar
  96. Magyari EK, Chapman JC, Passmore DG, Allen JRM, Huntley JP, Huntley B (2010) Holocene persistence of wooded steppe in the Great Hungarian Plain. Journal of Biogeography 37:915–935CrossRefGoogle Scholar
  97. Magyari EK, Kuneš P, Jakab G, Sümegi P, Pelánková B, Schäbitz F, Braun M, Chytrý M (2014) Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia? Quaternary Science Reviews 95:60–79CrossRefGoogle Scholar
  98. Mitchell FJG (2005) How open were European primeval forests? Hypothesis testing using palaeoecological data. Journal of Ecology 93:168–177CrossRefGoogle Scholar
  99. Neuhäuslová Z, Blažková D, Grulich V, Husová M, Chytrý M, Jeník J, Jirásek J, Kolbek J, Kropáč Z, … Sádlo J (1998) Mapa potenciální přirozené vegetace České republiky [Map of potential natural vegetation of the Czech Republic]. Academia, PrahaGoogle Scholar
  100. Novák J, Petr L, Treml V (2010) Late-Holocene human-induced changes to the extent of alpine areas in the East Sudetes, Central Europe. The Holocene 20:895–905CrossRefGoogle Scholar
  101. Novák J, Sádlo J, Svobodová-Svitavská H (2012) Unusual vegetation stability in a lowland pine forest area (Doksy region, Czech Republic). The Holocene 22:947–955CrossRefGoogle Scholar
  102. Novák J, Svoboda J, Šída P, Prostředník J, Pokorný P (2015) A charcoal record of Holocene woodland succession from sandstone rock shelters of North Bohemia (Czech Republic). Quaternary International 366:25–36CrossRefGoogle Scholar
  103. Novák J, Abraham V, Kočár P, Petr L, Kočárová R, Nováková K, Houfková P, Jankovská V, Vaněček Z (2017) Middle- and upper-Holocene woodland history in central Moravia (Czech Republic) reveals biases of pollen and anthracological analysis. The Holocene 27:349–360CrossRefGoogle Scholar
  104. Nováková D (2000) Rekonstrukce paleoekologických poměrů rašelinišť NPR Adršpašsko-teplické skály metodou analýzy makrozbytků [Reconstruction of palaeoecological conditions of peat bogs in the protected area of Adršpach-Teplice rocks based on plant macrofossil analysis]. MSc thesis, Charles University, PrahaGoogle Scholar
  105. Opravil E (1972) Výsledky analýz makrozbytků z rašeliny ve Františkových Lázních [Results of plant macrofossil analysis from peat in Františkovy Lázně]. Památky archeologické 63:429–431Google Scholar
  106. Overballe-Petersen MV, Nielsen AB, Bradshaw RHW (2013) Quantitative vegetation reconstruction from pollen analysis and historical inventory data around a Danish small forest hollow. Journal of Vegetation Science 24:755–771CrossRefGoogle Scholar
  107. Past Interglacials Working Group of PAGES (2016) Interglacials of the last 800,000 years. Reviews of Geophysics 54:162–219CrossRefGoogle Scholar
  108. Pelánková B, Chytrý M (2009) Surface pollen-vegetation relationships in the forest-steppe, taiga and tundra landscapes of the Russian Altai Mountains. Review of Palaeobotany and Palynology 157:253–265CrossRefGoogle Scholar
  109. Peša V, Kozáková R (2012) Die nacheiszeitliche Landschaftsentwicklung des Lausitzer Gebirges. In: Puttkammer T (ed) Auf den Spuren der Germanen. Begleitband zur Wanderausstellung. Museum der Westlausitz, Kamenz, pp 128–143Google Scholar
  110. Petr L, Novák J (2014) High vegetation and environmental diversity during the late glacial and early Holocene on the example of lowlands in the Czech Republic. Biologia 69:847–862CrossRefGoogle Scholar
  111. Petr L, Žáčková P, Grygar TM, Píšková A, Křížek M, Treml V (2013) Šúr, a former late-glacial and Holocene lake at the westernmost margin of the Carpathians. Preslia 85:239–263Google Scholar
  112. Petr L, Sádlo J, Žáčková P, Lisá L, Novák J, Rohovec J, Pokorný P (2014) Late-Glacial and Holocene environmental history of an oxbow wetland in the Polabí lowland (river Elbe, Czech Republic); a context-dependent interpretation of a multi-proxy analysis. Folia Geobotanica 49:137–162CrossRefGoogle Scholar
  113. Pokorná A, Houfková P, Novák J, Bešta T, Kovačiková L, Nováková K, Zavřel J, Starec P (2014) The oldest Czech fishpond discovered? An interdisciplinary approach to reconstruction of local vegetation in mediaeval Prague suburbs. Hydrobiologia 730:191–213CrossRefGoogle Scholar
  114. Pokorný P (2002) A high-resolution record of Late-Glacial and Early-Holocene climatic and environmental change in the Czech Republic. Quaternary International 91:101–122Google Scholar
  115. Pokorný P (2003) Rostlinné makrozbytky [Plant macrofossils]. In: Svoboda J (ed) Mezolit severních Čech [Mesolithic of northern Bohemia]. Archeologický ústav AV ČR, Brno, pp 272–273Google Scholar
  116. Pokorný P, Jankovská V (2000) Long-term vegetation dynamics and the infilling process of a former lake (Švarcenberk, Czech Republic). Folia Geobotanica 35:433–457CrossRefGoogle Scholar
  117. Pokorný P, Kuneš P (2005) Holocene acidification process recorded in three pollen profiles from Czech sandstone and river terrace environments. Ferrantia 44:101–107Google Scholar
  118. Pokorný P, Klimešová J, Klimeš L (2000) Late Holocene history and vegetation dynamics of a floodplain alder carr: a case study from eastern Bohemia, Czech Republic. Folia Geobotanica 35:43–58CrossRefGoogle Scholar
  119. Pokorný P, Boenke N, Chytráček M, Nováková K, Sádlo J, Veselý J, Kuneš P, Jankovská V (2006) Insight into the environment of a pre-Roman Iron Age hillfort at Vladař, Czech Republic, using a multi-proxy approach. Vegetation History and Archaeobotany 15:419–433CrossRefGoogle Scholar
  120. Pokorný P, Kuneš P, Abraham V (2008) Holocenní vývoj vegetace v Českém Švýcarsku [The Holocene vegetation development in Bohemian Switzerland]. In: Bauer P, Kopecký V, Šmucar J (eds) Labské pískovce – historie, příroda a ochrana území [Elbe Sandstones – history, nature and conservation of the area]. AOPK, Správa CHKO Labské pískovce, Děčín, pp 35–49Google Scholar
  121. Pokorný P, Sádlo J, Bernardová A (2010a) Holocene history of Cladium mariscus (L.) Pohl in the Czech Republic. Implications for species population dynamics and palaeoecology. Acta Palaeobotanica 50:65–76Google Scholar
  122. Pokorný P, Šída P, Chvojka O, Žáčková P, Kuneš P, Světlík I, Veselý J (2010b) Palaeoenvironmental research of the Schwarzenberg Lake, southern Bohemia, and exploratory excavations of this key Mesolithic archaeological area. Památky archeologické 101:5–38Google Scholar
  123. Pokorný P, Chytrý M, Juřičková L, Sádlo J, Novák J, Ložek V (2015) Mid-Holocene bottleneck for central European dry grasslands: did steppe survive the forest optimum in northern Bohemia, Czech Republic? The Holocene 25:716–726CrossRefGoogle Scholar
  124. Pokorný P, Novák J, Šída P, Divišová M, Kozáková R, Abraham V (2017) I. Vývoj vegetace severočeských pískovcových území od pozdního glaciálu po střední holocén [Vegetation development of northern-Bohemian sandstone areas since the Late Glacial to the Middle Holocene]. In: Svoboda J (ed) Mezolit severních Čech 2 [Mesolithic of northern Bohemia 2]. Archeologický ústav AV ČR, Brno, pp 11–37Google Scholar
  125. Pop E, Bakels C (2015) Semi-open environmental conditions during phases of hominin occupation at the Eemian interglacial basin site Neumark-Nord 2 and its wider environment. Quaternary Science Reviews 117:72–81CrossRefGoogle Scholar
  126. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23:76–86CrossRefGoogle Scholar
  127. Ruddiman WF, Kutzbach JE, Vavrus SJ (2011) Can natural or anthropogenic explanations of late-Holocene CO2 and CH4 increases be falsified? The Holocene 21:865–879CrossRefGoogle Scholar
  128. Rybníček K (1973) Comparison of the present and past mire communities of Central Europe. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 237–261Google Scholar
  129. Rybníček K (1983) The environmental evolution and infilling process of a former lake near Vracov (Czechoslovakia). Hydrobiologia 103:247–250CrossRefGoogle Scholar
  130. Rybníček K, Rybníčková E (1968) The history of flora and vegetation on the Bláto mire in southeast Bohemia (palaeoecological study). Folia Geobotanica et Phytotaxonomica 3:117–142Google Scholar
  131. Rybníček K, Rybníčková E (1978) Palynological and historical evidence of virgin coniferous forests at middle altitudes in Czechoslovakia. Vegetatio 36:95–103CrossRefGoogle Scholar
  132. Rybníček K, Rybníčková E (1996) Czech and Slovak Republics. In: Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) Paleoecological events during the last 15000 years. Wiley, Chichester, pp 488–490Google Scholar
  133. Rybníček K, Rybníčková E (2008) Upper Holocene dry land vegetation in the Moravian–Slovakian borderland (Czech and Slovak Republics). Vegetation History and Archaeobotany 17:701–711CrossRefGoogle Scholar
  134. Rybníčková E (1974) Die Entwicklung der Vegetation und Flora im südlichen Teil der Böhmisch-Mährischen Höhe während des Spätglazials und Holozäns. Academia, PrahaGoogle Scholar
  135. Rybníčková E, Rybníček K (1972) Erste Ergebnisse paläogeobotanischer Untersuchungen des Moores bei Vracov, Südmähren. Folia Geobotanica et Phytotaxonomica 7:285–308CrossRefGoogle Scholar
  136. Rybníčková E, Rybníček K (2014) Palaeovegetation in the Pavlovské vrchy hills region (South Moravia, Czech Republic) around 25,000 BP: the Bulhary core. Vegetation History and Archaeobotany 23:719–728CrossRefGoogle Scholar
  137. Rybníčková E, Hájková P, Rybníček K (2005) The origin and development of spring fen vegetation and ecosystems–palaeogeobotanical results. In: Poulíčková A, Hájek M, Rybníček K (eds) Ecology and palaeoecology of spring fens of the West Carpathians. Palacký University, Olomouc & Academy of Sciences of the Czech Republic, Masaryk University Brno, Olomouc, pp 29–57Google Scholar
  138. Sádlo J, Pokorný P, Hájek P, Dreslerová D, Cílek V (2005) Krajina a revoluce: významné přelomy ve vývoji kulturní krajiny českých zemí [Landscape and revolution: significant shifts in the development of cultural landscape in the Bohemian lands]. Malá Skála, PrahaGoogle Scholar
  139. Sandom CJ, Ejrnæs R, Hansen MDD, Svenning J-C (2014) High herbivore density associated with vegetation diversity in interglacial ecosystems. Proceedings of the National Academy of Sciences of the USA 111:4162–4167PubMedPubMedCentralCrossRefGoogle Scholar
  140. Sernander R (1908) On the evidences of postglacial changes of climate furnished by the peat-mosses of northern Europe. Geologiska Föreningen i Stockholm Förhandlingar 30:465–473CrossRefGoogle Scholar
  141. Šizling AL, Pokorný P, Juřičková L, Horáčková J, Abraham V, Šizlingová E, Ložek V, Tjørve E, Tjørve KMC, Kunin W (2016) Can people change the ecological rules that appear general across space? Global Ecology and Biogeography 25:1072–1084CrossRefGoogle Scholar
  142. Stebich M, Litt T (1997) Das Georgenfelder Hochmoor ein Archiv für Vegetations-, Siedlungs- und Bergbaugeschichte. Leipziger Geowissenschaften 5:209–216Google Scholar
  143. Štor T, Sádlo J, Abraham V, Martínek K (2016) Změny fluviálního stylu během svrchního pleistocénu a holocénu na příkladu nivy řeky Ploučnice v severních Čechách [The fluvial style changes during the Upper Pleistocene and Holocene: case study of Ploučnice River, Northern Bohemia]. Zprávy o geologických výzkumech 49:123–127Google Scholar
  144. Stuiver M, Grootes PM, Braziunas TF (1995) The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research 44:341–354Google Scholar
  145. Suda T (2012) Historie vegetace Chebské pánve ze sedimentárního záznamu lokality SOOS [History of vegetational development in the Cheb Basin from sedimentary record of the SOOS national nature reserve]. MSc thesis, Charles University, PrahaGoogle Scholar
  146. Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. Journal of Ecology 82:881–897CrossRefGoogle Scholar
  147. Sugita S (2007a) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. The Holocene 17:229–241CrossRefGoogle Scholar
  148. Sugita S (2007b) Theory of quantitative reconstruction of vegetation II: all you need is LOVE. The Holocene 17:243–257CrossRefGoogle Scholar
  149. Švarcová MG (2012) Postglaciální historie lokálních fenoménů horské vegetace západních Čech [Postglacial vegetation history of local phenomena in western Bohemia]. MSc thesis, Charles University, PrahaGoogle Scholar
  150. Svenning J-C (2002) A review of natural vegetation openness in north-western Europe. Biological Conservation 104:133–148CrossRefGoogle Scholar
  151. Svenning J-C (2003) Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecology Letters 6:646–653Google Scholar
  152. Svobodová H (1989) Rekonstrukce přírodního prostředí a osídlení v okolí Mistřína. Palynologická studie [Reconstruction of natural environment and human settlement round about Mistřín. A palynological study]. Památky archeologické 80:188–206Google Scholar
  153. Svobodová H (1997) Die Entwicklung der Vegetation in Südmähren (Tschechien) während des Spätglazials und Holozäns – eine palynologische Studie. Verhandlungen der Zoologisch-Botanischen Gesellschaft in Österreich 134:317–356Google Scholar
  154. Szabó P, Kuneš P, Svobodová-Svitavská H, Švarcová MG, Křížová L, Suchánková S, Müllerová J, Hédl R (2017) Using historical ecology to reassess the conservation status of coniferous forests in Central Europe. Conservation Biology 31:150–160Google Scholar
  155. Tollefsrud MM, Kissling R, Gugerli F, Johnsen O, Skrøppa T, Cheddadi R, van der Knaap W, Latałowa M, ... Sperisen C (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Molecular Ecology 17:4134–4150Google Scholar
  156. Tzedakis PC, Hooghiemstra H, Pälike H (2006) The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quaternary Science Reviews 25:3416–3430Google Scholar
  157. Tzedakis PC, Emerson BC, Hewitt GM (2013) Cryptic or mystic? Glacial tree refugia in northern Europe. Trends in Ecology and Evolution 28:696–704Google Scholar
  158. van der Hammen T, Wijmstra TA, Zagwijn WH (1971) The flora record of the late Cenozoic of Europe. In: Turekian KK (ed) The late Cenozoic glacial ages. Yale University Press, New Haven, pp 391–424Google Scholar
  159. van Raden UJ, Colombaroli D, Gilli A, Schwander J, Bernasconi SM, van Leeuwen J, Leuenberger M, Eicher U (2013) High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP. Palaeogeography, Palaeoclimatology, Palaeoecology 391, Part B:13–24Google Scholar
  160. Vegas-Vilarrúbia T, Rull V, Montoya E, Safont E (2011) Quaternary palaeoecology and nature conservation: a general review with examples from the neotropics. Quaternary Science Reviews 30:2361–2388Google Scholar
  161. Vera FWM (2000) Grazing ecology and forest history. CABI Publishing, New YorkCrossRefGoogle Scholar
  162. Vočadlová K, Petr L, Žáčková P, Křížek M, Křížová L, Hutchinson SM, Šobr M (2015) The Lateglacial and Holocene in Central Europe: a multi-proxy environmental record from the Bohemian Forest, Czech Republic. Boreas 44:769–784CrossRefGoogle Scholar
  163. Wagner S, Litt T, Sánchez-Goñi M-F, Petit RJ (2015) History of Larix decidua Mill. (European larch) since 130 ka. Quaternary Science Reviews 124:224–247CrossRefGoogle Scholar
  164. Walker MJC (1995) Climatic changes in Europe during the last glacial/interglacial transition. Quarternary International 28:63–76CrossRefGoogle Scholar
  165. Walker MJC, Berkelhammer M, Björck S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene series/epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). Journal of Quaternary Science 27:649–659CrossRefGoogle Scholar
  166. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513PubMedCrossRefGoogle Scholar
  167. Wäreborn I (1969) Land molluscs and their environments in an oligotrophic area in southern Sweden. Oikos 20:461–479CrossRefGoogle Scholar
  168. Willis KJ, van Andel TH (2004) Trees or no trees? the environments of central and eastern Europe during the Last Glaciation. Quaternary Science Reviews 23:2369–2387CrossRefGoogle Scholar
  169. Zagwijn WH (1960) Aspects of the Pliocene and early Pleistocene vegetation in the Netherlands. Uitgevers-mij. “Ernest van Aelst”, MaastrichtGoogle Scholar
  170. Žák K, Ložek V, Kadlec J, Hladíková J, Cílek V (2002) Climate-induced changes in Holocene calcareous tufa formations, Bohemian Karst, Czech Republic. Quarternary International 91:137–152CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BotanyFaculty of Science, Charles UniversityPraha 2Czech Republic

Personalised recommendations