Opportunities and Challenges to Implementing Genomic Selection in Clonally Propagated Crops



Clonal propagation of fruits, flowers, and forest trees leads to high levels of heterozygosity, fixes favorable combinations of traits, eliminates undesirable deleterious effects, allows easy identification, propagation of favorable mutations, and is an efficient method for in vitro and ex vitro maintenance and conservation. However, these same characteristics pose challenges to genetic improvement. Many clonal fruits and forest trees have a long juvenile phase, extensive outcrossing, widespread hybridization, limited population structure, multiple origins, and ongoing crop–wild gene flow, and have suffered from domestication bottlenecks, and are polyploid. Breeding clonal crops requires a crossing step involving two heterozygous parents, as a break to create genetic variation that can be exploited during selection in subsequent cycles, before reverting to clonal selection. The presence of several segregating alleles, overdominance and epistatic interactions, at each locus of highly heterozygous clonal crop decreases efficiency of phenotypic selection in breeding programs and genetic studies. Genomic selection (GS) that uses genome-wide genotypic data to predict the phenotypic performance of a genotype by estimating its breeding value has the potential to increase efficiency of clonal crop breeding. In this chapter, potential use and challenges of GS to expedite the breeding process in clonally propagated crops are discussed, with examples. We identify challenges associated with specific features of clonal crops to be addressed in GS models and highlight development of improved marker and bioinformatics platforms to distinguish between paralogous copies and to incorporate partial heterozygosity and allele dosage determination.


Clonal crops Genotype-by-environment interactions Genetic architecture Heritability Breeding cycle 


  1. Azevedo CF, de Resende MDV, e Silva FF, Viana JMS, Valente MSF, Resende MFR, Muñoz P (2015) Ridge, Lasso and Bayesian additive-dominance genomic models. BMC Genet 16(1):1CrossRefGoogle Scholar
  2. Bisognin DA (2011) Breeding vegetatively propagated horticultural crops. Crop Breed Appl Biotechnol S1:35–43, Brazilian Society of Plant BreedingCrossRefGoogle Scholar
  3. Bradshaw JE (1994) Quantitative genetics theory for tetrasomic inheritance. In: Bradshaw JE, Mackay GR (eds) Potato Genetics. CABI, Cambridge, pp 71–99Google Scholar
  4. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  5. Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH (2015) Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet 128:1647–1667CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cros D, Denis M, Sánchez L, Cochard B, Flori A, Durand-Gasselin T, Nouy B, Omoré A, Pomiès V, Riou V, Suryana E, Bouvet J-M (2015) Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.) Theor Appl Genet 128:397–410CrossRefPubMedGoogle Scholar
  7. Crossa J, Pérez P, Hickey J, Burgueño J, Ornella L, Cerón-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112(1):48–60CrossRefPubMedGoogle Scholar
  8. Denis M, Bouvet JM (2013). Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genetics & Genomes, 9(1):37–51Google Scholar
  9. D’hoop BB, Paulo MJ, Kowitwanich K, Sengers M, Visser RGF, van Eck HJ, van Eeuwijk FA (2010) Population structure and linkage disequilibrium unravelled in tetraploid potato. Theor Appl Genet 121:1151–1170CrossRefPubMedPubMedCentralGoogle Scholar
  10. de Oliveira EJ, Resende MDV, Santos VDS, Ferreira CF, Oliveira GAF, da Silva MS, de Oliveira LA, Carlos Ivan Aguilar-Vildoso CI (2012) Genome-wide selection in cassava. Euphytica 187:263–276CrossRefGoogle Scholar
  11. Dufresne F, Stift M, Vergilino R, Marble BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 23(1):40–69CrossRefPubMedGoogle Scholar
  12. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefPubMedGoogle Scholar
  13. Gianola D, Van Kaam JB (2008) Reproducing Kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289–2303CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gouy M, Rousselle Y, Bastianelli D, Lecomte P, Bonnal L, Roques D, Efile JC, Rocher S, Daugrois J, Toubi L, Nabeneza S, Hervouet C, Telismart H, Denis M, Thong Chane A, Glaszmann JC, Hoarau JY, Nibouche S, Costet L (2013) Experimental assessment of the accuracy of genomic selection in sugarcane. Theor Appl Genet 126:2575–2586CrossRefPubMedGoogle Scholar
  15. Grattapaglia D, Resende MDV (2011) Genomic selection in forest tree breeding. Tree Genet Genomes 7:241–255CrossRefGoogle Scholar
  16. Griffin PC, Robin C, Hoffmann AA (2011) A next-generation sequencing method for overcoming the multiple gene copy problem in polyploid phylogenetics, applied to Poa grasses. BMC biology, 9(1):19Google Scholar
  17. Grüneberg W, Mwanga R, Andrade M, Espinoza J (2009) Breeding clonally propagated crops. In FAO, selection methods: chapter 13, part 5
  18. Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177(4):2389–2397PubMedPubMedCentralGoogle Scholar
  19. Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinform 12:186CrossRefGoogle Scholar
  20. Habyarimana E, Parisi B, Onofri C, Govoni F, Mandolino G Efficiency of genomic selection for yield, merceological and nutritional quality traits in hundred thirty-nine cultivates potato genotype. EAPR 2014 Brussels - 19th triennial conference, 6 to 11 July 2014, conference paper, doi: 10.13140/2.1.1966.9286
  21. Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9(2):166–177CrossRefPubMedGoogle Scholar
  22. Jannoo N, Grivet L, Dookun A, D’Hont A, Glaszmann JC (1999) Linkage desequilibrium among modern sugarcane cultivars. Theor Appl Genet 99:1053–1060CrossRefGoogle Scholar
  23. Jansky SH, Charkowski AO, Douches DS, Gusmini G, Richael C, Bethke PC, Spooner DM, Novy RG, De Jong H, De Jong WS, Bamberg JB (2016) Reinventing potato as a diploid inbred line-based crop. Crop Sci 56:1–11CrossRefGoogle Scholar
  24. Jones A (1965) Cytological observations and fertility measurements of sweetpotato [Ipomoea batatas (L.) Lam]. Proc Am Soc Horticult Sci 86:527–537Google Scholar
  25. Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, Carlisle C (2012) Genomic selection for fruit quality traits in apple. PloS One 7(5):e36674CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kumar S, Garrick DJ, Bink MCAM, Whitworth C, Chagné D, Richard K, Volz RK (2013) Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics 2013(14):393CrossRefGoogle Scholar
  27. Leitch A, Leitch I (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483CrossRefPubMedGoogle Scholar
  28. Ly D, Hamblin M, Rabbi I, Melaku G, Bakare M, Gauch HG Jr, Okechukwu R, Dixon AGO, Kulakow P, Jannink J-L (2013) Relatedness and genotype × environment interaction affect prediction accuracies in genomic selection: a study in cassava. Crop Sci 53:1312–1325CrossRefGoogle Scholar
  29. Meuwissen T (2007) Genomic selection: marker-assisted selection on a genome-wide scale. J Anim Breed Genet 124(6):321–322CrossRefPubMedGoogle Scholar
  30. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  31. Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98(9):1389–1414CrossRefPubMedGoogle Scholar
  32. Muñoz PR, Resende MFR, Gezan SA, Resende MDV, de los Campos G, Kirst M, Huber D, Peter GF (2014) Unraveling additive from non-additive effects using genomic relationship matrices. Genetics 198:1759–1768CrossRefPubMedPubMedCentralGoogle Scholar
  33. Muranty H, Troggio M, Sadok IB, Rifai MA, Auwerkerken A, Banchi E, Velasco R, Stevanato P, van de Weg WE, Di Guardo M, Kumar S, Laurens F, Bink MCAM (2015) Accuracy and responses of genomic selection on key traits in apple breeding. Horticult Res 2:15060. doi: 10.1038/hortres.2015.60 CrossRefGoogle Scholar
  34. Myles S (2013) Improving fruit and wine: what does genomics have to offer? Trends Genet 29(4):190–196CrossRefPubMedGoogle Scholar
  35. Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316CrossRefPubMedPubMedCentralGoogle Scholar
  36. Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 103:681–686CrossRefGoogle Scholar
  37. Poland J, Rutkoski J (2016) Advances and challenges in genomic selection for disease resistance. Annu Rev Phytopathol 54:79–98CrossRefPubMedGoogle Scholar
  38. Raboin L-M, Pauquet J, Butterfield M, D’Hont A, Glaszmann J-C (2008) Analysis of genome-wide linkage disequilibrium in the highly polyploid sugarcane. Theor Appl Genet 116:701–714CrossRefPubMedGoogle Scholar
  39. Resende MFR, Muñoz P Jr, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M (2012) Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.) Genetics 190:1503–1510CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sardos J, Rouard M, Hueber Y, Cenci A, Hyma KE, van den Houwe I et al (2016) A genome-wide association study on the seedless phenotype in banana (Musa spp.) reveals the potential of a selected panel to detect candidate genes in a vegetatively propagated crop. PLoS One 11(5):e0154448CrossRefPubMedPubMedCentralGoogle Scholar
  41. Serang O, Mollinari M, Garcia AAF (2012) Efficient exact maximum a posteriori computation for Bayesian SNP genotyping in polyploids. PLoS One 7:e30906CrossRefPubMedPubMedCentralGoogle Scholar
  42. Simko I, Haynes KG, Jones RW (2006) Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics 173:2237–2245CrossRefPubMedPubMedCentralGoogle Scholar
  43. Simmonds NW (1962) The Evolution of the Bananas. Tropical Sciences Series. Longman, London, pp. 170Google Scholar
  44. Simmonds NW (1979) Principles of crop improvement. Longman, New YorkGoogle Scholar
  45. Slater AT, Cogan NOI, Forster JW, Hayes BJ, Daetwyler HD (2016) Improving genetic gain with genomic selection in autotetraploid potato. Plant Genome 9. doi: 10.3835/plantgenome2016.02.0021
  46. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11(2):e1004982CrossRefPubMedPubMedCentralGoogle Scholar
  47. Spooner DM, Gavrilenko T, Jansky SH, Ovchinnikova A, Krylova E, Knapp S, Simon R (2010) Ecogeography of ploidy variation in cultivated potato (Solanum sect. Petota). Am J Bot 97(12):2049–2060CrossRefPubMedGoogle Scholar
  48. Stich B, Urbany C, Hoffmann P, Gebhardt C (2013) Population structure and linkage disequilibrium in diploid and tetraploid potato revealed by genome-wide high density genotyping using the SolCAP SNP array. Plant Breed 132:718–724CrossRefGoogle Scholar
  49. van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticult Res 1:14022. doi: 10.1038/hortres.2014.22 CrossRefGoogle Scholar
  50. Voorrips R, Gort G, Vosman B (2011) Genotype calling in tetraploid species from bi allelic marker data using mixture models. BMC Bioinformatics 12:172CrossRefPubMedPubMedCentralGoogle Scholar
  51. Weng Z, Wolc A, Shen X, Fernando RL, Dekkers JC, Arango J et al (2016a) Effects of number of training generations on genomic prediction for various traits in a layer chicken population. Genet Sel Evol 48(1):1CrossRefGoogle Scholar
  52. Weng Z, Wolc A, Shen X, Fernando RL, Dekkers JCM, Arango J, Settar P, Fulton JE, O’Sullivan NP, Garrick DJ (2016b) Effects of number of training generations on genomic prediction for various traits in a layer chicken population. Genet Sel Evol 48:22CrossRefPubMedPubMedCentralGoogle Scholar
  53. Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink J-L, Sorrells ME, Raman B, Cairns JE, Tarekegne A, Semagn K, Beyene Y, Grudloyma P, Technow F, Riedelsheimer C, Melchinger AE (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 Genes Genomes Genet 2:1427–1436Google Scholar
  54. Wolfe MD, Rabbi IY, Egesi C, Hamblin M, Kawuki R, Kulakow P, Lozano R, Del Carpio DP, Ramu P, Jannink J-L (2016) Genome-wide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. Plant Genome 9. doi: 10.3835/plantgenome2015.11.0118
  55. Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD et al (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4(12):e8451. doi: 10.1371/journal.pone.0008451 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.International Potato Centre (CIP)LimaPeru
  2. 2.Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant ScienceCornell University, New York State Agricultural Experiment StationGenevaUSA

Personalised recommendations