Skip to main content

Bayesian Genomic-Enabled Prediction Models for Ordinal and Count Data

  • Chapter
  • First Online:
Genomic Selection for Crop Improvement

Abstract

The purpose of this chapter is to present recent advances in models for genomic-enabled prediction developed for ordinal categorical and count data. For both models we provide details of their corresponding derivation and then apply them to a real data set. The proposed models were derived using a Bayesian framework. Bayesian logistic ordinal regression (BLOR) and Bayesian negative binomial regression (BNBR) make use of the Pólya-Gamma distribution to produce an analytic Gibbs, a sampler with similar full conditional distributions of a model with Gaussian response and can be used for complex data sets as those that arise in the context of genomic selection where the sample size usually is smaller than the number of covariates (markers). We illustrate the proposed models using simulation and a real data set. Results indicate that our models for ordinal categorical and count data are a good alternative for analyzing ordinal and count data in the context of genomic-enabled prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albert JH, Chib S (1993) Bayesian analysis of binary and polychotomous response data. J Am Stat Assoc 88(422):669–679

    Article  Google Scholar 

  • Berridge DM, Crouchley R (2011) Multivariate generalized linear mixed models using R. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bartlett MS (1947) The use of transformations. Biometrics 3(1):39–52

    Article  CAS  PubMed  Google Scholar 

  • Brier GW (1950) Verification of forecasts expressed in terms of probability. Mon Weather Rev 78:1–3

    Article  Google Scholar 

  • Burgueño J, de los Campos GDL, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719

    Article  Google Scholar 

  • Casellas J, Caja G, Ferret A, Piedrafita J (2007) Analysis of litter size and days to lambing in the Ripollesa ewe. I. comparison of models with linear and threshold approaches . J Anim Sci 85:618–624

    Google Scholar 

  • Cavanagh, C.R., Chao, S., Wang, S. et al. (2013). Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences. 110(20):8057–8062

    Google Scholar 

  • Crossa J, Pérez-Rodríguez P, de los Campos G, Mahuku G, Dreisigacker S, Magorokosho C (2011) Genomic selection and prediction in plant breeding. Journal of Crop Improvement 25(3):239–261

    Article  Google Scholar 

  • Czado C, Gneiting T, Held L (2009) Predictive model assessment for count data. Biometrics 65(4):1254–1261

    Article  PubMed  Google Scholar 

  • de los Campos, G., and Perez-Rodriguez, P. (2013). BGLR: Bayesian generalized linear regression. R package version. http://R-Forge.R-project.org/projects/bglr/

    Google Scholar 

  • de Maturana EL, Gianola D, Rosa GJM, Weigel KA (2009) Predictive ability of models for calving difficulty in US Holsteins. J Anim Breed Genet 126:179–188

    Article  PubMed  Google Scholar 

  • Garthwaite PH, Kadane JB, O'Hagan A (2005) Statistical methods for eliciting probability distributions. J Am Stat Assoc 100(470):680–701

    Article  CAS  Google Scholar 

  • Gelfand AE, Smith AF (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85(410):398–409

    Article  Google Scholar 

  • Geyer CJ (1992) Practical Markov chain Monte Carlo. Stat Sci 7(4):473–483

    Article  Google Scholar 

  • Gianola D (1980) A method of sire evaluation for dichotomies. J of Anim Sci 51(6):1266–1271

    Article  CAS  Google Scholar 

  • Gianola D (1982) Theory and analysis of threshold characters. J Anim Sci 54(5):1079–1096

    Article  Google Scholar 

  • Gianola D, Foulley JL (1983) Sire evaluation for ordered categorical data with a threshold model. Genet Sel Evol 15(2):1–23

    Article  Google Scholar 

  • Gianola D (2013) Priors in whole-genome regression: the Bayesian alphabet returns. Genetics 194:573–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Camacho JM, de los Campos G, Pérez-Rodríguez P, Gianola D, Cairns JE, Mahuku G, Crossa J (2012) Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet 125(4):759–771

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Recio O, Forni S (2011) Genome-wide prediction of discrete traits using Bayesian regressions and machine learning. Genet Sel Evol 43:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67

    Article  Google Scholar 

  • Kizilkaya K, Tait RG, Garrick DJ, Fernando RL, Reecy JM (2011) Whole genome analysis of infectious bovine keratoconjunctivitis in Angus cattle using Bayesian threshold models. BMC Proc 5:S22

    Article  PubMed  PubMed Central  Google Scholar 

  • Kizilkaya K, Fernando RL, Garrick DJ (2014) Reduction in accuracy of genomic prediction for ordered categorical data compared to continuous observations. Genet Sel Evol 46(1):37. doi: 10.1186/1297-9686-46-37

  • Link WA, Eaton MJ (2012) On thinning of chains in MCMC. Methods Ecol Evol 3(1):112–115

    Article  Google Scholar 

  • MacEachern SN, Berliner LM (1994) Subsampling the Gibbs sampler. Am Stat 48(3):188–190

    Google Scholar 

  • McCulloch CE, Searle SR (2001) Generalized, linear, and mixed models (1st ed.). Chichester: Wiley. ISBN 0-471-19364-X.

    Google Scholar 

  • Montesinos-López OA, Montesinos-López A, Pérez-Rodríguez P, de los Campos G, Eskridge KM, Crossa J (2015a) Threshold models for genome-enabled prediction of ordinal categorical traits in plant breeding. G3: Genes| Genomes| Genetics 5(1):291–300

    Article  Google Scholar 

  • Montesinos-López OA, Montesinos-López A, Crossa J, Burgueño J, Eskridge K (2015b) Genomic-enabled prediction of ordinal data with Bayesian logistic ordinal regression. G3: Genes|Genomes|Genetics 5(10):2113–2126. http://doi.org/10.1534/g3.115.021154

    Article  PubMed Central  Google Scholar 

  • Montesinos-López OA, Montesinos-López A, Pérez-Rodríguez P, Eskridge K, He X, Juliana P, Crossa J (2015c) Genomic prediction models for count data. J Agric Biol Environ Stat 20(2):533–554

    Google Scholar 

  • Montesinos-López A, Montesinos-López OA, Crossa J, Burgueño J, Eskridge K, Falconi-Castillo E, He X, Singh P, Cichy K (2016) Genomic Bayesian prediction model for count data with genotype × environment interaction. G3: Genes|Genomes|Genetics 6(5):1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc A 135:370–384. doi:10.2307/2344614

    Article  Google Scholar 

  • O’Hara RB, Kotze DJ (2010) Do not log-transform count data. Methods Ecol Evol 1(2):118–122

    Article  Google Scholar 

  • Park T, van Dyk DA (2009) Partially collapsed Gibbs samplers: illustrations and applications. J Comput Graph Stat 18(2):283–305

    Article  Google Scholar 

  • Polson NG, Scott JG, Windle J (2013) Bayesian inference for logistic models using Pólya–gamma latent variables. J Am Stat Assoc 108:1339–1349

    Article  CAS  Google Scholar 

  • Quenouille MH (1949) A relation between the logarithmic, Poisson, and negative binomial series. Biometrics 5:162–164

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Valverde R, Misztal I, Bertrand J, K. (2001) Comparison of threshold vs linear and animal vs sire models for predicting direct and maternal genetic effects on calving difficulty in beef cattle. J Anim Sci 79:333–338

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0, URL http://www.R-project.org/

  • Schurink A, Wolc A, Ducro B, Frankena K, Garrick D, Dekkers J, van Arendonk J (2012) Genome-wide association study of insect bite hypersensitivity in two horse populations in the Netherlands. Genet Sel Evol 44(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott J, Pillow JW (2013) Fully Bayesian inference for neural models with negative-binomial spiking. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems 25. Cornell University, New York, pp 1898–1906

    Google Scholar 

  • Sorensen DA, Andersen S, Gianola D, Korsgaard I (1995) Bayesian inference in threshold models using Gibbs sampling. Genet Sel Evol 27(3):229–249

    Article  PubMed Central  Google Scholar 

  • Stroup WW (2012) Generalized linear mixed models: modern concepts, methods and applications. CRC Press, Boca Raton

    Google Scholar 

  • Stroup WW (2015) Rethinking the analysis of non-normal data in plant and soil science. Agron J 107(2):811–827

    Article  Google Scholar 

  • Teerapabolarn K, Jaioun K (2014) An improved Poisson approximation for the negative binomial distribution. Appl Math Sci 8(89):4441–4445

    Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Vazquez AI, Weigel KA, Gianola D, Bates DM, Perez-Cabal MA et al (2009) Poisson versus threshold models for genetic analysis of clinical mastitis in US Holsteins. J Dairy Sci 92:5239–5247

    Article  CAS  PubMed  Google Scholar 

  • Varona L, Misztal I, Bertrand J, K. (1999) Threshold-linear versus linear-linear analysis of birth weight and calving ease using an animal model. Ii. Comparison of models. J Anim Sci 77:2003–2007

    Article  CAS  PubMed  Google Scholar 

  • Villanueva B, Fernandez J, Garcia-Cortes LA, Varona L, Daetwyler HD, Toro MA (2011) Accuracy of genome-wide evaluation for disease resistance in aquaculture breeding programs. J Anim Sci 89:3433–3442

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Ding XD, Wang JY, Liu JF, Fu WX, Zhang Z, Jin ZJ, Zhang Q (2013) Bayesian methods for estimating GEBVs of threshold traits. Heredity 110(3):213–219

    Article  PubMed  Google Scholar 

  • Wecker WE (1989) Assessing the accuracy of time series model forecasts of count observations. J Bus Econ Stat 7(4):418–419

    Google Scholar 

  • Wright S (1934) An analysis of variability in number of digits in an inbred strain of guinea pigs. Genetics 19:506–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Tempelman RJ (2012) A Bayesian antedependence model for whole genome prediction. Genetics 190(4):1491–1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Zucknick, M., and Richardson, S. (2014). MCMC algorithms for Bayesian variable selection in the logistic regression model for large-scale genomic applications. Technical Report. http://arxiv.org/abs/1402.2713.

    Google Scholar 

  • Zhou M, Li L, Dunson D, Carin L (2012) Lognormal and gamma mixed negative binomial regression. In machine learning: proceedings of the international conference on machine learning. vol. 2012. p 1343. NIH Public Access.

    Google Scholar 

Download references

Acknowledgments

We would like to thank all researchers in CIMMYT’s Global Maize Program (GMP) and Global Wheat Program (GWP), as well as the national program researchers who generated the data used in this and other studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Crossa .

Editor information

Editors and Affiliations

Appendices

Appendix A: Derivation of Full Conditional Distributions for Model BLOR

Liabilities and ω ijt . The fully conditional posterior distribution of liability l ijt is

$$ P\left(\boldsymbol{l}| ELSE\right)\propto P\left(\boldsymbol{l}|\ \boldsymbol{\beta}, \boldsymbol{b}\right)P\left(\boldsymbol{y}|\boldsymbol{l},\boldsymbol{\gamma}\ \right) $$
$$ \propto \prod_{i=1}^I\prod_{j=1}^J\prod_{t=1}^{n_{ij}}f\left({l}_{ij t}\right)\sum_{c=1}^CI\left({y}_{ij t}=c\right)I\left({\gamma}_{c-1}<{l}_{ij t}<{\gamma}_c\right) $$
$$ \propto \prod_{i=1}^I\prod_{j=1}^J\prod_{t=1}^{n_{ij}}\frac{\exp \left(-{l}_{ij t}+{\boldsymbol{x}}_i^T\boldsymbol{\beta} +{b}_{1j}+{b}_{2 ij}\right)}{{\left[1+\exp \left(-{l}_{ij t}+{\boldsymbol{x}}_i^T\boldsymbol{\beta} +{b}_{1j}+{b}_{2 ij}\right)\right]}^2}\sum_{c=1}^CI\left({y}_{ij t}=c\right)I\left({\gamma}_{c-1}<{l}_{ij t}<{\gamma}_c\right) $$
$$ {\displaystyle \begin{array}{l}\propto \prod \limits_{i=1}^I\prod \limits_{j=1}^J\prod \limits_{t=1}^{n_{ij}}{2}^{-2}{\int}_0^{\infty}\exp \left[-\frac{\omega_{ij t}{\left(-{l}_{iljt}+{\boldsymbol{x}}_i^T\boldsymbol{\beta} +{b}_{1j}+{b}_{2 ij}\right)}^2}{2}\right]P\left({\omega}_{ij t};b=2,d=0\right) \\ {}\times d{\omega}_{ij t}\sum \limits_{c=1}^CI\left({y}_{ij t}=c\right)I\left({\gamma}_{c-1}<{l}_{ij t}<{\gamma}_c\right) \end{array}} $$

The last inequality was obtained using a technique called the Pólya-Gamma method (Scott and Pillow 2013), which is useful when working with logistic likelihoods, and has the form

$$ \frac{{\left({e}^{\psi}\right)}^a}{{\left(1+{e}^{\psi}\right)}^b}={2}^{-b}{e}^{\kappa \psi}{\int}_0^{\infty }{e}^{-\frac{\omega {\psi}^2}{2}}P\left(\omega; b,0\right) d\omega $$

where κ = a − b/2 and P(ω; b, d = 0) denotes the density of the random variable ω ~ PG(b, d = 0), where PG(b, d) denotes a Pólya-Gamma distribution l ijt with parameters b and d and density

\( P\left(\omega; b,d\right)=\left\{{cosh}^b\left(\frac{d}{2}\right)\right\}\frac{2^{b-1}}{\Gamma (b)}\sum_{n=0}^{\infty }{\left(-1\right)}^n\frac{\Gamma \left(n+b\right)\left(2n+b\right)}{\Gamma \left(n+1\right)\sqrt{2\pi {\omega}^3}}\exp \left(-\frac{{\left(2n+b\right)}^2}{8\omega }-\frac{d^2}{2}\omega \right), \)where cosh denotes the hyperbolic cosine.

Then the joint posterior distribution of l ijt  and ω ijt is equal to

$$ {\displaystyle \begin{array}{l}P\left(\boldsymbol{l},\boldsymbol{\omega} | ELSE\right)\propto \prod \limits_{i=1}^I\prod \limits_{j=1}^J\prod \limits_{t=1}^{n_{ij}}{2}^{-2}\exp \left[-\frac{\omega_{ij}{\left(-{l}_{ij t}+{\boldsymbol{x}}_i^T\boldsymbol{\beta} +{b}_{1j}+{b}_{2 ij}\right)}^2}{2}\right]P\left({\omega}_{ij t};2,0\right) \\ {}\times \sum \limits_{c=1}^CI\left({y}_{ij t}=c\right)I\left({\gamma}_{c-1}<{l}_{ij t}<{\gamma}_c\right) \end{array}} $$

Therefore, the fully conditional posterior distribution of liability l ijt is a truncated normal distribution and its density is

$$ {\displaystyle \begin{array}{ll} & f\left({l}_{ijt}| ELSE\right)\\ {}& =\frac{\phi \left(\sqrt{\omega_{ijt}}\left({l}_{ijt}-{\boldsymbol{x}}_i^T\boldsymbol{\beta} -{b}_{1j}-{b}_{2 ij}\right)\right)}{\varPhi \left(\sqrt{\omega_{ijt}}\left({\gamma}_c-{\boldsymbol{x}}_i^T\boldsymbol{\beta} -{b}_{1j}-{b}_{2 ij}\right)\right)-\varPhi \left(\sqrt{\omega_{ijt}}\left({\gamma}_{c-1}-{\boldsymbol{x}}_i^T\boldsymbol{\beta} -{\boldsymbol{b}}_{1\boldsymbol{j}}-{\boldsymbol{b}}_{2\boldsymbol{ij}}\right)\right)} \end{array}} $$

For simplicity, ELSE is the data and the parameters, except for the one in question. ϕ and Φ are the density and distribution function of a standard normal random variable and the fully conditional posterior distribution l ijt of ω ijt is

$$ f\left({\omega}_{ijt}| ELSE\right)\propto {2}^{-2}\exp \left[-\frac{\omega_{ijt}{\left(-{l}_{ijt}+{\boldsymbol{x}}_i^T\boldsymbol{\beta} +{b}_{1j}+{b}_{2 ij}\right)}^2}{2}\right]P\left({\omega}_{ijt};2,0\right)\propto \exp \left[-\frac{\omega_{ijt}{\left(-{l}_{ijt}+{\boldsymbol{x}}_i^T\boldsymbol{\beta} +{b}_{1j}+{b}_{2 ij}\right)}^2}{2}\right]P\left({\omega}_{ijt};2,0\right) $$

From here and from Eq. (4.5) of Polson et al. (2013), we get that

$$ f\left({\omega}_{ijt}| ELSE\right)\sim PG\left(2,-{l}_{ijt}+{\boldsymbol{x}}_{\boldsymbol{i}}^{\boldsymbol{T}}\boldsymbol{\beta} +{b}_{1j}+{b}_{2 ij}\right) $$

Regression Coefficients ( β )

First note that the fully conditional posterior of l , β , ω is

$$ P\left(\boldsymbol{l},\boldsymbol{\beta}, \boldsymbol{\omega} | ELSE\right)\propto P\left(\boldsymbol{l}|\ \boldsymbol{\beta}, {\boldsymbol{b}}_1,{\boldsymbol{b}}_2\right)P\left(\boldsymbol{y}|\boldsymbol{l},\boldsymbol{\gamma}\ \right)P\left(\boldsymbol{\omega} \right)P\Big(\boldsymbol{\beta} \left|{\boldsymbol{\sigma}}_{\boldsymbol{\beta}}^2\Big)\right. $$
$$ \propto \mathit{\exp}\left(-\frac{1}{2}{\left(-\boldsymbol{l}+\boldsymbol{X}\boldsymbol{\beta } +\sum_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h\right)}^T{\boldsymbol{D}}_{\omega}\left(-\boldsymbol{l}+\boldsymbol{X}\boldsymbol{\beta } +\sum_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h\right)\right)P\left(\boldsymbol{\omega} \right)P\Big(\boldsymbol{\beta} \left|{\boldsymbol{\sigma}}_{\boldsymbol{\beta}}^2\Big)\right. $$

where \( P\left(\boldsymbol{\omega} \right)={\prod}_{i=1}^I{\prod}_{j=1}^J\prod_{t=1}^{n_{ij}}P\left({\omega}_{ij t};2,0\right) \). Then, the full conditional posterior distribution of β is

$$ {\displaystyle \begin{array}{l}P\left(\boldsymbol{\beta} | ELSE\right)\hfill \\ {}\begin{array}{l}\hfill \\ {}\times \propto \mathit{\exp}\left(-\frac{1}{2}{\left(-\boldsymbol{l}+\boldsymbol{X}\boldsymbol{\beta } +\sum \limits_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h\right)}^T{\boldsymbol{D}}_{\omega}\left(-\boldsymbol{l}+\boldsymbol{X}\boldsymbol{\beta } +\sum \limits_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h\right) -\frac{1}{2}{\left(\boldsymbol{\beta} -{\boldsymbol{\beta}}_0\right)}^T\left({\boldsymbol{\varSigma}}_0^{-1}{\boldsymbol{\sigma}}_{\boldsymbol{\beta}}^{-2}\right)\left(\boldsymbol{\beta} -{\boldsymbol{\beta}}_0\right)\right)\hfill \end{array}\end{array}} $$
$$ \propto \exp \left(-\frac{1}{2}\left[{\boldsymbol{\beta}}^T\left({\boldsymbol{\varSigma}}_0^{-1}{\sigma}_{\beta}^{-2}+{\boldsymbol{X}}^T{\boldsymbol{D}}_{\omega}\boldsymbol{X}\right)\boldsymbol{\beta} -2{\left({\boldsymbol{\varSigma}}_0^{-1}{\sigma}_{\boldsymbol{\beta}}^{-2}{\boldsymbol{\beta}}_0-{\boldsymbol{X}}^T{\boldsymbol{D}}_{\omega}\left(\sum_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h\right)+{\boldsymbol{X}}^T{\boldsymbol{D}}_{\omega}\boldsymbol{l}\right)}^T\boldsymbol{\beta} \right]\right) $$
$$ \propto \mathit{\exp}\left(-\frac{1}{2}\left[{\left(\boldsymbol{\beta} -{\overset{\sim }{\boldsymbol{\beta}}}_0\right)}^T{\overset{\sim }{\boldsymbol{\varSigma}}}_0^{-1}\left(\boldsymbol{\beta} -{\overset{\sim }{\boldsymbol{\beta}}}_0\right)\right]\right) $$

where \( {\overset{\sim }{\boldsymbol{\varSigma}}}_0={\left({\boldsymbol{\varSigma}}_0^{-1}{\sigma}_{\beta}^{-2}+{\boldsymbol{X}}^T{\boldsymbol{D}}_{\boldsymbol{\omega}}\boldsymbol{X}\right)}^{-1} \), \( {\overset{\sim }{\boldsymbol{\beta}}}_0={\overset{\sim }{\boldsymbol{\varSigma}}}_0\left({\boldsymbol{\varSigma}}_0^{-1}{\sigma}_{\beta}^{-2}{\boldsymbol{\beta}}_0-{\boldsymbol{X}}^T{\boldsymbol{D}}_{\omega}\left(\sum_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h\right)+{\boldsymbol{X}}^T{\boldsymbol{D}}_{\omega}\boldsymbol{l}\right) \). It is important to point out that if we use a prior for β ∝ Constant (improper uniform distribution), then in \( {\overset{\sim }{\boldsymbol{\varSigma}}}_0 \) and \( {\overset{\sim }{\boldsymbol{\beta}}}_0 \) we need to make 0 the term \( {\boldsymbol{\varSigma}}_0^{-1}{\sigma}_{\beta}^{-2} \). Finally, the full conditional) posterior of β is

$$ \boldsymbol{\beta} \left|\boldsymbol{ELSE}\right.\sim {N}_I\left({\overset{\sim }{\boldsymbol{\beta}}}_0,{\overset{\sim }{\boldsymbol{\varSigma}}}_0\right) $$

Polygenic effects ( b h )

Now the full conditional posterior of b h is given as

$$ {\displaystyle \begin{array}{l}L\left({\boldsymbol{b}}_h| ELSE\right) \\ {}\propto \exp \left(-\frac{1}{2}{\left(-\boldsymbol{l}+\boldsymbol{X}\boldsymbol{\beta } +\sum \limits_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h\right)}^T{\boldsymbol{D}}_{\omega}\left(-\boldsymbol{l}+\boldsymbol{X}\boldsymbol{\beta } +\sum \limits_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h\right)\right)P\left({\boldsymbol{b}}_{\boldsymbol{h}}|{\sigma}_{b_h}^2\right) \end{array}} $$
$$ \propto \mathit{\exp}\left\{-\frac{1}{2}\ \left[{\boldsymbol{b}}_h^T\left({\sigma}_b^{-2}{\boldsymbol{G}}^{-1}+{\boldsymbol{Z}}_h^T{\boldsymbol{D}}_{\omega }{\boldsymbol{Z}}_h\right){\boldsymbol{b}}_h-2\ {\left({\boldsymbol{Z}}_h^T{\boldsymbol{D}}_{\omega}\boldsymbol{l}-{\boldsymbol{Z}}_h^T{\boldsymbol{D}}_{\omega}\boldsymbol{X}\boldsymbol{\beta } \right)}^T\ {\boldsymbol{b}}_h\right]\right\} $$
$$ \propto \mathit{\exp}\left\{-\frac{1}{2}\ {\left({\boldsymbol{b}}_h-{\overset{\sim }{\boldsymbol{b}}}_h\right)}^T{\boldsymbol{F}}_h^{-1}\left({\boldsymbol{b}}_h-{\overset{\sim }{\boldsymbol{b}}}_h\right)\right\} $$

This implies that the full conditional posterior of b h is

$$ f\left({\boldsymbol{b}}_h| ELSE\right)\sim N\left({\overset{\sim }{\boldsymbol{b}}}_{\boldsymbol{h}}={\boldsymbol{F}}_{\boldsymbol{h}}\left({\boldsymbol{Z}}_h^T{\boldsymbol{D}}_{\omega}\boldsymbol{l}-{\boldsymbol{Z}}_h^T{\boldsymbol{D}}_{\omega }{\boldsymbol{\eta}}^h\right),{\boldsymbol{F}}_{\boldsymbol{h}}={\left({\sigma}_{b_h}^{-2}{\boldsymbol{G}}_h^{-1}+{\boldsymbol{Z}}_h^T{\boldsymbol{D}}_{\omega }{\boldsymbol{Z}}_h^T\right)}^{-1}\right) $$

with h = 1 , 2, η 1 =  + Z 2 b 2 and η 2 =  + Z 1 b 1.

Variance of polygenic effects \( \left({\sigma}_{b_h}^2\right). \)

Next, the conditional distribution of \( {\sigma}_{b_h}^2 \) is obtained. If \( {\sigma}_{b_h}^2\sim {\chi}^{-2}\left({\nu}_h,{S}_h\right)\left( shape and\ scale\right) \), then

$$ P\left({\sigma}_{b_h}^2| ELSE\right)\propto \frac{1}{{\left({\sigma}_{b_h}^2\right)}^{\frac{\nu_h+{n}_h}{2}+1}}\exp \left(-\frac{{\boldsymbol{b}}_h^T{\boldsymbol{G}}_h^{-1}{{\boldsymbol{b}}_{\boldsymbol{h}}}_h+{\nu}_h{S}_h}{2{\sigma}_{b_h}^2}\right) $$

This is the kernel of the scaled inverted χ 2 distribution; therefore, the full conditional posterior is

$$ f\left({\sigma}_{b_h}^2| ELSE\right)\sim {\chi}^{-2}\left({\overset{\sim }{\nu}}_{\boldsymbol{h}}={\nu}_h+{n}_h,{\overset{\sim }{S}}_{\boldsymbol{b}}=\left({\boldsymbol{b}}_h^T{\boldsymbol{G}}_h^{-1}{\boldsymbol{b}}_h+{\nu}_h{S}_h\right)/{\nu}_b+{n}_h\right) $$

Threshold effects ( γ )

The density of the full conditional posterior distribution of the cth threshold, γ c , is

$$ P\left(\boldsymbol{\gamma} |\boldsymbol{ELSE}\right)\propto P\left(\boldsymbol{y}|\boldsymbol{l},\boldsymbol{\gamma} \right)P\left(\boldsymbol{\gamma} \right) $$
$$ \propto \prod_{i=1}^I\prod_{j=1}^J\prod_{t=1}^{n_{ij}}\sum_{c=1}^CI\left({y}_{ij t}=c\right)I\left({\gamma}_{c-1}<{l}_{ij t}<{\gamma}_c\right)I\left(\boldsymbol{\gamma} \in \boldsymbol{T}\right) $$
(4.A.1)

If Eq. (4.A.1) is seen as a function of γ c , it is evident that the value of γ c must be larger than all the l ijt |y ijt  = c and smaller than all the l ijt |y ijt  = c + 1. Hence, as a function of γ c , Eq. (4.A.1) leads to the uniform density

$$ P\left({\gamma}_c\left| ELSE\right.\right)=\frac{1}{\mathit{\min}\left({l}_{ijt}\left|{y}_{ijt}=c\right.+1\right)-\mathit{\max}\left({l}_{ijt}\left|{y}_{ijt}=c\right.\right)}I\left(\boldsymbol{\gamma} \in \boldsymbol{T}\right) $$
(4.A.2)

Equation (4.A.2) corresponds to a uniform distribution on the interval [min{min (l ijt |y ijt  = c + 1), γ c + 1, γ max}, max{max(l ijt |y ijt  = c), γ c − 1, γ min }] (Albert and Chib 1993; Sorensen et al. 1995).

Variance of location effects (\( {\sigma}_{\beta}^2\Big) \)

If we give \( {\sigma}_{\beta}^2\sim {\chi}^{-2}\left({\nu}_{\beta },{S}_{\beta}\right)\left( shape and\ scale\right) \), then

$$ P\left({\sigma}_{\beta}^2| ELSE\right)\propto P\left({\sigma}_{\beta}^2\right)P\left(\boldsymbol{\beta} |\ {\sigma}_{\beta}^2\right)=\frac{1}{{\left({\sigma}_{\beta}^2\right)}^{\frac{\nu_{\beta }}{2}+1}}\mathit{\exp}\left(-\frac{\nu_{\beta }{S}_{\beta }}{2{\sigma}_{\beta}^2}\right)P\left(\boldsymbol{\beta} |\ {\sigma}_{\beta}^2\right) $$
$$ \propto \frac{1}{{\left({\sigma}_{\beta}^2\right)}^{\frac{\nu_{\beta }+I}{2}+1}}\mathit{\exp}\left(-\frac{{\left(\boldsymbol{\beta} -{\boldsymbol{\beta}}_0\right)}^T{\boldsymbol{\varSigma}}_0^{-1}\left(\boldsymbol{\beta} -{\boldsymbol{\beta}}_0\right)+{\nu}_{\beta }{S}_{\beta }}{2{\sigma}_{\beta}^2}\right) $$

This is the kernel of the scaled inverted χ 2 distribution; therefore, the full conditional posterior is

$$ {\sigma}_{\beta}^2\mid ELSE\sim {\chi}^{-2}\left({\overset{\sim }{\nu}}_{\beta }={\nu}_{\beta }+I,{\overset{\sim }{S}}_{\beta }=\left[{\left(\boldsymbol{\beta} -{\boldsymbol{\beta}}_0\right)}^T{\varSigma}_0^{-1}\left(\boldsymbol{\beta} -{\boldsymbol{\beta}}_0\right)+{\nu}_{\beta }{S}_{\beta}\right]/{\nu}_{\beta }+I\right) $$

Appendix B: Derivation of Full Conditional Distributions for Model BNBR

Full conditional for β

$$ f\left(\ {\boldsymbol{\beta}}^{\ast}| ELSE\right)=\prod_{i=1}^I\prod_{j=1}^J\prod_{t=1}^{n_{ij}}\mathit{\Pr}\left({Y}_{ij t}={y}_{ij t}|{\boldsymbol{x}}_i^T,r,{\omega}_{ij t},{b}_{1j},{b}_{2 ij}\right)f\left(\ {\boldsymbol{\beta}}^{\ast}\right) $$
$$ {\displaystyle \begin{array}{l}\propto \mathit{\exp}\left({\boldsymbol{\kappa}}^T\boldsymbol{X}\ {\boldsymbol{\beta}}^{\ast}+{\boldsymbol{\kappa}}^T\sum \limits_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h-\frac{1}{2}{\left(\boldsymbol{X}\ {\boldsymbol{\beta}}^{\ast}+\sum \limits_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h\right)}^T\right.\\ {}\left.{\boldsymbol{D}}_{\omega}\left(\boldsymbol{X}\ {\boldsymbol{\beta}}^{\ast}+\sum \limits_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h\right)-\frac{1}{2}{\left(\ {\boldsymbol{\beta}}^{\ast}-{\boldsymbol{\beta}}_0\right)}^T{\boldsymbol{\varSigma}}_0^{-1}{\sigma}_{\beta}^{-2}\left(\ {\boldsymbol{\beta}}^{\ast}-{\boldsymbol{\beta}}_0\right)\right)\end{array}} $$
$$ \propto \mathit{\exp}\left(-\frac{1}{2}\left[{\boldsymbol{\beta}}^{\ast T}\left({\boldsymbol{\varSigma}}_0^{-1}{\sigma}_{\beta}^{-2}+{\boldsymbol{X}}^T{\boldsymbol{D}}_{\omega}\boldsymbol{X}\right)\ {\boldsymbol{\beta}}^{\ast}-2{\left({\boldsymbol{\varSigma}}_0^{-1}{\sigma}_{\beta}^{-2}{\boldsymbol{\beta}}_0-{\boldsymbol{X}}^T{\boldsymbol{D}}_{\omega} \sum_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h+{\boldsymbol{X}}^T\boldsymbol{\kappa} \right)}^T\ {\boldsymbol{\beta}}^{\ast}\right]\right) $$
$$ \propto \mathit{\exp}\left(-\frac{1}{2}\left[{\left(\ {\boldsymbol{\beta}}^{\ast}-{\overset{\sim }{\boldsymbol{\beta}}}_0\right)}^T{\overset{\sim }{\boldsymbol{\varSigma}}}_0^{-1}\left(\ {\boldsymbol{\beta}}^{\ast}-{\overset{\sim }{\boldsymbol{\beta}}}_0\right)\right]\right)\propto N\left({\overset{\sim }{\boldsymbol{\beta}}}_0,{\overset{\sim }{\boldsymbol{\varSigma}}}_0\right) $$

where \( {\overset{\sim }{\boldsymbol{\varSigma}}}_0={\left({\boldsymbol{\varSigma}}_0^{-1}{\sigma}_{\beta}^{-2}+{\boldsymbol{X}}^T{\boldsymbol{D}}_{\boldsymbol{\omega}}\boldsymbol{X}\right)}^{-1}, \) \( {\overset{\sim }{\boldsymbol{\beta}}}_0={\overset{\sim }{\boldsymbol{\varSigma}}}_0\left({\boldsymbol{\varSigma}}_0^{-1}{\sigma}_{\beta}^{-2}{\boldsymbol{\beta}}_0-{\boldsymbol{X}}^T{\boldsymbol{D}}_{\omega}\sum_{h=1}^2{\boldsymbol{Z}}_h{\boldsymbol{b}}_h+{\boldsymbol{X}}^T\boldsymbol{\kappa} \right) \).

Full conditional for ω ijt

$$ f\left({\omega}_{ijt}| ELSE\right)\propto \exp \left[-\frac{\omega_{ijt}{\left({\boldsymbol{x}}_i^T{\boldsymbol{\beta}}^{\ast }+{b}_{1j}+{b}_{2 ij}\right)}^2}{2}\right]f\left({\omega}_{ijt};{y}_{ijt}+r,0\right) $$
$$ \propto \exp \left[-\frac{\omega_{ijt}{\left({\boldsymbol{x}}_i^T{\boldsymbol{\beta}}^{\ast }+{b}_{1j}+{b}_{2 ij}\right)}^2}{2}\right]f\left({\omega}_{ijt};{y}_{ijt}+r,0\right)\propto PG\left({y}_{ijt}+r,{\boldsymbol{x}}_i^T{\boldsymbol{\beta}}^{\ast }+{b}_{1j}+{b}_{2 ij}\right) $$

Full conditional for b 1

Defining η 1 = X β  + Z 2 b 2, the conditional distribution of b 1 is given as

$$ f\left({\boldsymbol{b}}_1| ELSE\right)\propto \mathit{\exp}\left({\boldsymbol{\kappa}}^T{\boldsymbol{Z}}_1{\boldsymbol{b}}_1-\frac{1}{2}{\left({\boldsymbol{Z}}_1{\boldsymbol{b}}_1+{\boldsymbol{\eta}}^1\right)}^T{\boldsymbol{D}}_{\omega}\left({\boldsymbol{Z}}_1{\boldsymbol{b}}_1+{\boldsymbol{\eta}}^1\right)\right)\ f\left({\boldsymbol{b}}_1|{\sigma}_{b_1}^2\right) $$
$$ \propto \mathit{\exp}\left\{-\frac{1}{2}\ \left[{\boldsymbol{b}}_1^T\left({\sigma}_{b_1}^{-2}{\boldsymbol{G}}_1^{-1}+{\boldsymbol{Z}}_1^T{\boldsymbol{D}}_{\omega }{\boldsymbol{Z}}_1\right)\boldsymbol{u}-2\ {\left({\boldsymbol{Z}}_1^T\boldsymbol{\kappa} -{\boldsymbol{Z}}_1^T{\boldsymbol{D}}_{\omega }{\boldsymbol{\eta}}^1\right)}^T\ {\boldsymbol{b}}_1\right]\right\} $$
$$ \propto \exp \left\{-\frac{1}{2}{\left({\boldsymbol{b}}_1-{\overset{\sim }{\boldsymbol{b}}}_1\right)}^T{\boldsymbol{F}}_1^{-1}\left({\boldsymbol{b}}_1-{\overset{\sim }{\boldsymbol{b}}}_1\right)\right\}\sim N\left({\overset{\sim }{\boldsymbol{b}}}_1,{\boldsymbol{F}}_1\right) $$

where\( {\boldsymbol{F}}_1={\left({\sigma}_{b_1}^{-2}{\boldsymbol{G}}_1^{-1}+{\boldsymbol{Z}}_1^T{\boldsymbol{D}}_{\omega }{\boldsymbol{Z}}_1\right)}^{-1}\ \mathrm{and}\ {\overset{\sim }{\boldsymbol{b}}}_1={\boldsymbol{F}}_1\left({\boldsymbol{Z}}_1^T\boldsymbol{\kappa} -{\boldsymbol{Z}}_1^T{\boldsymbol{D}}_{\omega }{\boldsymbol{\eta}}^1\right) \).

Full conditional for \( {\sigma}_{b_h}^2 \)

$$ f\left({\sigma}_{b_h}^2| ELSE\right)\propto \frac{1}{{\left({\sigma}_{b_h}^2\right)}^{\frac{\nu_{b_h}+{n}_{b_h}}{2}+1}}\mathit{\exp}\left(-\frac{{\boldsymbol{b}}_h^T{\boldsymbol{G}}_h^{-1}{\boldsymbol{b}}_h+{\nu}_{b_h}{S}_{b_h}}{2{\sigma}_{b_h}^2}\right) $$
$$ \propto {\chi}^{-2}\left({\overset{\sim }{\nu}}_b={\nu}_{b_h}+{n}_{b_h},{\overset{\sim }{S}}_b=\left({\boldsymbol{b}}_h^T{\boldsymbol{G}}_h^{-1}{\boldsymbol{b}}_h+{\nu}_{b_h}{S}_{b_h}\right)/{\nu}_{b_h}+{n}_{b_h}\right) $$

with \( {n}_{b_1}=J \) and \( {n}_{b_2}= IJ \).

Full conditional for \( {\sigma}_{\beta^{\ast}}^2 \)

$$ f\left({\sigma}_{\beta^{\ast}}^2| ELSE\right)\propto \frac{1}{{\left({\sigma}_{\beta^{\ast}}^2\right)}^{\frac{\nu_{\beta^{\ast }}+I}{2}+1}}\exp \left(-\frac{{\left({\boldsymbol{\beta}}^{\ast }-{\boldsymbol{\beta}}_0\right)}^T{\boldsymbol{\varSigma}}_0^{-1}\left({\boldsymbol{\beta}}^{\ast }-{\boldsymbol{\beta}}_0\right)+{\nu}_{\beta^{\ast }}{S}_{\beta^{\ast }}}{2{\sigma}_{\beta^{\ast}}^2}\right) $$
$$ \propto {\chi}^{-2}\left({\overset{\sim }{\nu}}_{\beta^{\ast }}={\nu}_{\beta^{\ast }}+I,{\overset{\sim }{S}}_{\beta }=\left[{\left({\boldsymbol{\beta}}^{\ast }-{\boldsymbol{\beta}}_0\right)}^T{\boldsymbol{\varSigma}}_0^{-1}\left({\boldsymbol{\beta}}^{\ast }-{\boldsymbol{\beta}}_0\right)+{\nu}_{\beta^{\ast }}{S}_{\beta^{\ast }}\right]/{\nu}_{\beta^{\ast }}+I\right) $$

Full conditional for r

To make the inference of r, we first place a gamma prior on it as r ~ G(a 0, 1/b 0). Then we infer a latent count L for each Y ∼ NB(μ, r) conditional on Y and r. Since L ~ Pois(−r log(1 − π)), by construction we can use the Gamma-Poisson conjugacy to update r. Therefore, 

$$ f\left(r| ELSE\right)\propto f(r)\prod_{i=1}^I\prod_{j=1}^J\prod_t^{n_{ij}}f\left({y}_{ij t}|{L}_{ij t}\right)f\left({L}_{ij t}\right) $$
$$ \propto {r}^{a_0-1}\mathit{\exp}\left(-r{b}_0\right)\prod_{i=1}^I\prod_{j=1}^J\prod_t^{n_{ij}}{\left(- rlog\left(1-{\pi}_{ij}\right)\right)}^{L_{ij t}}\mathit{\exp}\left(r\ \mathit{\log}\left(1-{\pi}_{ij}\right)\right) $$
$$ \propto {r}^{a_0+{\sum}_{i=1}^I{\sum}_{j=1}^J{\sum}_{t=1}^{n_{ij}}{L}_{ij t}-1}\exp \left[-\left({b}_0-\sum_{i=1}^I\sum_{j=1}^J{\sum}_{t=1}^{n_{ij}}\log \left(1-{\pi}_{ij}\right)r\right)\right] $$
$$ \propto G\left({a}_0-\sum_{i=1}^I\sum_{j=1}^J{\sum}_{t=1}^{n_{ij}}\mathit{\log}\left(1-{\pi}_{ij}\right),\frac{1}{b_0+{\sum}_{i=1}^I{\sum}_{j=1}^J{\sum}_{t=1}^{n_{ij}}{L}_{ij t}}\right) $$
(4.A.5)

According to Zhou et al. (2012), the conditional posterior distribution of L ijt is a Chinese restaurant table (CRT) count random variable . That is, L ijt  ~ CRT(y ijt , r) and we can sample it as \( {L}_{ijt}={\varSigma}_{l=1}^{y_{ijt}}{d}_l, \) where \( {d}_l\sim Bernoulli\left(\frac{r}{l-1+r}\right). \)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montesinos-López, O.A., Montesinos-López, A., Crossa, J. (2017). Bayesian Genomic-Enabled Prediction Models for Ordinal and Count Data. In: Varshney, R., Roorkiwal, M., Sorrells, M. (eds) Genomic Selection for Crop Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-63170-7_4

Download citation

Publish with us

Policies and ethics