Skip to main content

Genomic Selection for Crop Improvement: An Introduction

  • Chapter
  • First Online:
Genomic Selection for Crop Improvement

Abstract

Marker-assisted selection (MAS) exploits the markers associated with traits of interest for selecting lines with superior alleles for developing improved lines. However use of MAS is restricted to simple traits due to its inability to handle complex traits. Advancements in genomics technologies have been able to dramatically reduce the cost of genotyping, enabling the use of genome-wide marker data for selecting lines with higher breeding value. Genomic selection (GS), a modern breeding approach that uses genome-wide marker data to estimate the breeding value and has the potential to address the complex traits. GS exploits the genotyping and phenotyping data on a training population to train the prediction models to calculate the genomic estimated breeding value (GEBV). GS has the capability to reduce selection cycle duration and increase selection accuracy, intensity, efficiency, and gains per unit of time, thereby enhancing the rate of genetic gains. Availability of cost-effective genotyping platforms has enabled the cost-effective generation of large-scale genotyping data, facilitating the deployment of GS in several crop species. This chapter provides an introduction to the book, highlighting the basic and advanced principles of GS breeding and its applications for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rutkoski JE, Heffner EL, Sorrells ME (2011) Genomic selection for durable stem rust resistance in wheat. Euphytica 179:161–173

    Article  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Varshney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varshney, R.K., Roorkiwal, M., Sorrells, M.E. (2017). Genomic Selection for Crop Improvement: An Introduction. In: Varshney, R., Roorkiwal, M., Sorrells, M. (eds) Genomic Selection for Crop Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-63170-7_1

Download citation

Publish with us

Policies and ethics