Skip to main content

Diversity and MIMO Techniques

  • Chapter
  • First Online:
Advanced Optical and Wireless Communications Systems

Abstract

The purpose of this chapter is to describe various diversity and MIMO techniques capable of improving single-input single-output system performance. Through MIMO concept it is also possible to improve the aggregate data rate. The diversity and MIMO techniques described are applicable to wireless MIMO communications as well as free-space optical and fiber-optics communications with coherent optical detection. Various diversity schemes are described including polarization diversity, spatial diversity, and frequency diversity schemes. The following receiver diversity schemes are described: selection combining, threshold combining, maximum-ratio combining, and equal-gain combining schemes. Various transmit diversity schemes are described, depending on the availability of channel state information on transmitter side. The most of the chapter is devoted to wireless and optical MIMO techniques. After description of various wireless and optical MIMO models, we describe the parallel decomposition of MIMO channels, followed by space-time coding (STC) principles. The maximum likelihood (ML) decoding for STC is described together with various design criteria. The following classes of STC are described: Alamouti code, orthogonal designs, linear space-time block codes, and space-time trellis codes. The corresponding STC decoding algorithms are described as well. After that we move our attention to spatial division multiplexing (SDM) principles and describe various BLAST encoding architectures as well as multigroup space-time coded modulation. The following classes of linear and feedback MIMO receiver for uncoded signals are subsequently described: zero-forcing, linear minimum MSE, and decision-feedback receivers. The next topic in the chapter is related to suboptimum MIMO receivers for coded signals. Within this topic we first describe linear zero-forcing (ZF) and linear MMSE receivers (interfaces) but in the context of STC. Within decision-feedback and BLAST receivers, we describe various horizontal/vertical (H/V) BLAST architecture including ZF and MMSE ones. The topic on suboptimum receivers is concluded with diagonal (D-)-BLAST and iterative receiver interfaces. The section on iterative MIMO receivers starts with brief introduction of concept of factor graphs, following with the description of factor graphs for MIMO channel and channels with memory. We then describe the sum-product algorithm (SPA) operating on factor graphs, followed by description of SPA for channels with memory. The following iterative MIMO receivers for uncoded signals are described: ZF, MMSE, ZF H/V-BLAST, and LMMSE H/V-BLAST receivers. After brief description of factor graphs for linear block and trellis codes, we describe several iterative MIMO receivers for space-time coded signals. The section on broadband MIMO describes how frequency selectivity can be used as an additional degree of freedom, followed by description of MIMO-OFDM and space-frequency block coding principles. The focus is then moved to MIMO channel capacity calculations for various MIMO channel models including deterministic, ergodic, and non-ergodic random channels, as well as correlated channel models. The concepts of ergodic and outage channel capacity are described. The section on MIMO channel capacity ends with MIMO-OFDM channel capacity description. In MIMO channel estimation section, the following MIMO channel estimation techniques are described: ML, least squares (LS), and linear minimum MSE MIMO channel estimation techniques. The last section concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Biglieri E (2005) Coding for wireless channels. Springer

    Google Scholar 

  3. Tse D, Viswanath P (2005) Fundamentals of wireless communication. Cambridge University Press

    Google Scholar 

  4. Kazovsky L, Benedetto S, Willner A (1996) Optical fiber communication systems. Artech House, Boston

    Google Scholar 

  5. Djordjevic I, Ryan W, Vasic B (2010) Coding for optical channels. Springer

    Google Scholar 

  6. Djordjevic IB, Cvijetic M, Lin C (2014) Multidimensional signaling and coding enabling Multi-Tb/s optical transport and networking. IEEE Signal Process Mag 31(2):104–117

    Article  Google Scholar 

  7. Cvijetic M, Djordjevic IB (2013) Advanced optical communications and networks. Artech House, Norwood

    Google Scholar 

  8. Craig JW (1991) A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations. In Proceedings of IEEE Military Communications Conference 1991 (MILCOM '91), vol 2. McLean, VA, pp 571–575, 4–7 Nov 1991

    Google Scholar 

  9. Stüber GL (2012) Principles of mobile communication, Third edn. Springer, New York

    Book  Google Scholar 

  10. Alamouti SM (1998) A simple transmit diversity technique for wireless communications. IEEE J Sel Areas Commun 16(8):1451–1458

    Article  Google Scholar 

  11. Djordjevic IB, Xu L, Wang T PMD compensation in coded-modulation schemes with coherent detection using Alamouti-type polarization-time coding. Opt Express 16(18):14163–14172. 09/01/2008

    Google Scholar 

  12. Tarokh V, Seshadri N, Calderbank AR (1998) Space–time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans Inf Theory 44(2):744–765

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldsmith A, Jafar SA, Jindal N, Vishwanath S (2003) Capacity limits of MIMO channels, IEEE J. Selected Areas in Communications 21(5):684–702

    Google Scholar 

  14. Shah AR, Hsu RCJ, Sayed AH, Jalali B (2005) Coherent optical MIMO (COMIMO). J Lightw Technol 23(8):2410–2419

    Article  Google Scholar 

  15. Hsu RCJ, Tarighat A, Shah A, Sayed AH, Jalali B (2005) Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links. J Lightwave Technol 23(8):2410–2419

    Article  Google Scholar 

  16. Tarighat A, Hsu RCJ, Sayed AH, Jalali B (2007) Fundamentals and challenges of optical multiple-input multiple output multimode fiber links. IEEE Commun Mag 45:57–63

    Article  Google Scholar 

  17. Bikhazi NW, Jensen MA, Anderson AL (2009) MIMO signaling over the MMF optical broadcast channel with square-law detection. IEEE Trans Commun 57(3):614–617

    Article  Google Scholar 

  18. Agmon A, Nazarathy M (2007) Broadcast MIMO over multimode optical interconnects by modal beamforming. Opt Express 15(20):13123–13128

    Article  Google Scholar 

  19. Alon E, Stojanovic V, Kahn JM, Boyd SP, Horowitz M (2004) Equalization of modal dispersion in multimode fibers using spatial light modulators, In: Proceedings of IEEE Global Telecommunication Conference 2004, Dallas, TX, Nov. 29-Dec. 3, 2004

    Google Scholar 

  20. Panicker RA, Kahn JM, Boyd SP (2008) Compensation of multimode fiber dispersion using adaptive optics via convex optimization. J. Lightw. Technol. 26(10):1295–1303

    Article  Google Scholar 

  21. Fan S, Kahn JM (2005) Principal modes in multi-mode waveguides. Opt Lett 30(2):135–137

    Article  Google Scholar 

  22. Kogelnik H, Jopson RM, Nelson LE (2002) Polarization-mode dispersion. In: Kaminow I, Li T (eds) Optical fiber telecommunications IVB: systems and impairments. Academic, San Diego, CA

    Google Scholar 

  23. Ho K-P, Kahn JM (2011) Statistics of group delays in multimode fiber with strong mode coupling. J. Lightw. Technol. 29(21):3119–3128

    Article  Google Scholar 

  24. Zou D, Lin C, Djordjevic IB (2012) LDPC-coded mode-multiplexed CO-OFDM over 1000 km of few-mode fiber. In: Proceedings of CLEO 2012, Paper no. CF3I.3, San Jose, CA, 6–11 May 2012

    Google Scholar 

  25. Djordjevic IB, Denic S, Anguita J, Vasic B, Neifeld MA (2008) LDPC-Coded MIMO optical communication over the atmospheric turbulence channel. IEEE/OSA J Lightwave Technol 26(5):478–487

    Article  Google Scholar 

  26. Biglieri E, Calderbank R, Constantinides A, Goldsmith A, Paulraj A, Poor HV (2007) MIMO wireless communications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Proakis JG (2007) Digital communications, fifth edn. McGraw Hill, New York, NY

    MATH  Google Scholar 

  28. Djordjevic IB (2012) Spatial-domain-based hybrid multidimensional coded-modulation schemes enabling Multi-Tb/s optical transport. IEEE/OSA J Lightwave Technol 30(14):2315–2328

    Article  Google Scholar 

  29. Foschini GJ (1996) Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech J 1:41–59

    Article  Google Scholar 

  30. Wolniansky PW, Foschini GJ, Golden GD, Valenzuela RA V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel. In: Proceedings of 1998 URSI International Symposium on Signals, Systems, and Electronics (ISSSE 98), pp 295–300, Pisa, 29 Sep-02 Oct 1998

    Google Scholar 

  31. Li X, Huang H, Foschini GJ, Valenzuela RA (2000) Effects of iterative detection and decoding on the performance of BLAST. In: Proceedings of IEEE Global Telecommunications Conference 2000. (GLOBECOM '00), vol 2. San Francisco, CA, pp 1061–1066

    Google Scholar 

  32. Foschini GJ, Chizhik D, Gans MJ, Papadias C, Valenzuela RA (2003) Analysis and performance of some basic space-time architectures. IEEE J Selec Areas Commun 21(3):303–320

    Article  Google Scholar 

  33. Loyka S, Gagnon F (2004) Performance analysis of the V-BLAST algorithm: an analytical approach. IEEE Trans Wirel Commun 3(4):1326–1337

    Article  Google Scholar 

  34. Tarokh V, Naguib A, Seshadri N, Calderbank AR (1999) Combined array processing and space-time coding. IEEE Trans Inf Theory 45(4):1121–1128

    Article  MathSciNet  MATH  Google Scholar 

  35. Horn RA, Johnson CR (1988) Matrix analysis. Cambridge Univ. Press, New York

    Google Scholar 

  36. Moustakas AL, Baranger HU, Balents L, Sengupta AM, Simon SH (2000) Communication through a diffusive medium: coherence and capacity. Science 287:287–290

    Article  Google Scholar 

  37. Da-Shan S, Foschini GJ, Gans MJ, Kahn JM (2000) Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Trans Commun 48(3):502–513

    Article  Google Scholar 

  38. Wittneben A (1991) Base station modulation diversity for digital simulcast. In: 41st IEEE Vehicular Technology Conference, 1991. Gateway to the Future Technology in Motion. St. Louis, MO, pp 848–853, 19–22 May 1991

    Google Scholar 

  39. Seshadri N, Winters JH (1993) Two signaling schemes for improving the error performance of frequency-division-duplex (FDD) transmission systems using transmitter antenna diversity.In: 43rd IEEE Vehicular Technology Conference, 1993, Secaucus, NJ, pp 508–511, 18–20 May 1993

    Google Scholar 

  40. Edelman A (1989) Eigen values and condition numbers of random matrices. PhD Dissertation, MIT, Cambridge

    Google Scholar 

  41. James AT (1964) Distributions of matrix variates and latent roots derived from normal samples. Ann Math Stat 35(2):475–501

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang H, Xia X-G (2003) Upper bounds of rates of complex orthogonal space-time block codes. IEEE Trans Inf Theory 49(10):2788–2796

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma X, Giannakis GB (2003) Full-diversity full-rate complex-field space-time coding. IEEE Trans Signal Process 51(11):2917–2930

    Article  MathSciNet  MATH  Google Scholar 

  44. Djordjevic IB, Xu L, Wang T (2008) PMD compensation in multilevel coded-modulation schemes with coherent detection using BLAST algorithm and iterative polarization cancellation. Opt Express 16(19):14845–14852

    Article  Google Scholar 

  45. Hampton JR (2014) Introduction to MIMO communications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  46. Wiberg N, Loeliger HA, Kotter R (1995) Codes and iterative decoding on general graphs. In: Proceedings of 1995 I.E. International Symposium on Information Theory, Whistler, BC, p 468

    Google Scholar 

  47. Kschischang FR, Frey BJ, Loeliger HA (2001) Factor graphs and the sum-product algorithm. IEEE Trans Inf Theory 47(2):498–519

    Article  MathSciNet  MATH  Google Scholar 

  48. Loeliger HA (2004) An introduction to factor graphs. IEEE Signal Process Mag 21(1):28–41

    Article  Google Scholar 

  49. Frey BJ, Kschischang FR, Loeliger H-A, Wiberg N (1997) Factor graphs and algorithms. In: Proceedings of 35th Allerton Conf. Communications, Control, and Computing, Allerton House, Monticello, IL, pp 666–680, Sept. 29–Oct. 1, 1997

    Google Scholar 

  50. Lin S, Costello DJ (2004) Error control coding: fundamentals and applications, 2nd edn. Pearson Prentice Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  51. Ryan WE, Lin S (2009) Channel codes: classical and modern. Cambridge University Press

    Google Scholar 

  52. Biglieri E, Taricco G, Tulino A (2002) Performance of space-time codes for a large number of antennas. IEEE Trans Inf Theory 48(7):1794–1803

    Article  MathSciNet  MATH  Google Scholar 

  53. Biglieri E, Taricco G, Tulino A (2002) Decoding space-time codes with BLAST architectures. IEEE Trans Signal Process 50(10):2547–2552

    Article  MATH  Google Scholar 

  54. Pulraj A, Nabar R, Gore D (2003) Introduction to space-time wireless communications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  55. Djordjevic IB (2016) On advanced FEC and coded modulation for ultra-high-speed optical transmission. IEEE Commun Surv Tutorials PP(99):1–31. doi:10.1109/COMST.2016.2536726

    Google Scholar 

  56. Ten Brink S (2001) Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Trans Commun 49(10):1727–1737

    Article  MATH  Google Scholar 

  57. Rappaport TS (2002) Wireless communications: principles and practice, 2nd edn. Prentice Hall

    Google Scholar 

  58. Zheng Z, Duman TM, Kurtas EM (2004) Achievable information rates and coding for MIMO systems over ISI channels and frequency-selective fading channels. IEEE Trans Commun 52(10):1698–1710

    Article  Google Scholar 

  59. Schober R, Gerstacker WH, Lampe LHJ (2004) Performance analysis and design of STBCs for frequency-selective fading channels. IEEE Trans Wirel Commun 3(3):734–744

    Article  Google Scholar 

  60. Zhang W, Xia XG, Ching PC (2007) High-rate full-diversity space–time–frequency codes for broadband MIMO block-fading channels. IEEE Trans Commun 55(1):25–34

    Article  Google Scholar 

  61. Siheh W, Djordjevic IB (2009) OFDM for optical communications. Elsevier/Academic Press, Amsterdam-Boston

    Google Scholar 

  62. Telatar E (1999) Capacity of Multi-antenna Gaussian Channels. Eur Trans Telecommun 10:585–595

    Article  MathSciNet  Google Scholar 

  63. Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Book  MATH  Google Scholar 

  64. Shin H, Lee JH (2003) Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole. IEEE Trans Inf Theory 49(10):2636–2647

    Article  MathSciNet  MATH  Google Scholar 

  65. Bölcskei H, Gesbert D, Paulraj AJ (2002) On the capacity of wireless systems employing OFDM-based spatial multiplexing. IEEE Trans Commun 50:225–234

    Article  Google Scholar 

  66. McDonough RN, Whalen AD (1995) Detection of signals in noise, 2nd edn. Academic Press, San Diego

    Google Scholar 

  67. Hassibi B, Hochwald BM (2003) How much training is needed in multiple-antenna wireless links? IEEE Trans Inf Theory 49(4):951–963

    Article  MATH  Google Scholar 

  68. Lin C, Djordjevic IB, Zou D (2015) Achievable information rates calculation for optical OFDM transmission over few-mode fiber long-haul transmission systems. Opt Express 23(13):16846–16856

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Djordjevic, I.B. (2018). Diversity and MIMO Techniques. In: Advanced Optical and Wireless Communications Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-63151-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63151-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63150-9

  • Online ISBN: 978-3-319-63151-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics