Skip to main content

Spread Spectrum, CDMA, and Ultra-Wideband Communications

  • Chapter
  • First Online:
Advanced Optical and Wireless Communications Systems
  • 1862 Accesses

Abstract

The subject of this chapter is devoted to spread spectrum (SS), CDMA, and ultra-wideband (UWB) communication systems. After the introduction of SS systems, both direct sequence-spread spectrum (DS-SS) and frequency hopping-spread spectrum (FH-SS) systems are described in detail. Regarding the DS-SS systems, after typical transmitter and receiver configurations are described, we describe in detail the synchronization process including acquisition and tracking stages. To deal with the multipath fading effects, the use of RAKE receiver is described. The section on DS-SS systems concludes with the spreading sequences description, in particular pseudo-noise (PN) sequences. In this section, after the introduction of the basic randomness criteria, we introduce maximal-length sequences (m-sequences) and describe their basic properties. In the same section, the concept of nonlinear PN sequences is introduced as well. Regarding the FH-SS systems, both slow-frequency hopping (SFH) and fast-frequency hopping (FFH) systems are introduced. We provide the detailed description of FH-SS systems, including both transmitter and demodulator as well as various time acquisition schemes. In the same section, we describe how to generate the FH sequences. After the introduction of CDMA systems, we describe various signature waveforms suitable for use in DS-CDMA systems including Gold, Kasami, and Walsh sequences. We then describe relevant synchronous and asynchronous CMDA models, with special attention devoted to discrete-time CDMA models. In section on multiuser detection (MUD), we describe how to deal with interference introduced by various CDMA users. The conventional single-user detector is used as the reference case. The various MUD schemes are described then, with special attention being paid to the jointly optimum MUD. The complexity of jointly optimum MUD might be prohibitively high for certain applications, and for such applications, we provide the description of the decorrelating receiver, which can compensate for multiuser interference, but enhances the noise effect. To solve for this problem, the linear minimum mean-square error (MMSE) receiver is introduced. The section on MUD concludes with a description of the nonlinear MUD schemes employing decisions on bits from other users (be preliminary or final), with description of successive cancelation and multistage detection schemes. In section on optical CDMA (OCDMA), we describe both incoherent and coherent optical detection-based OCDMA schemes. Regarding the incoherent optical detection-based schemes, we first describe how to design various unipolar signature sequences, known as optical orthogonal codes (OOC), followed by the description of basic incoherent OCDMA schemes including time-spreading, spectral amplitude coding (SAC), and wavelength hopping (WH) schemes. Related to coherent optical detection-based OCDMA systems, we describe both pulse laser-based and CW laser-based OCDMA systems. Further, the hybrid OFDM-CDMA systems are described, taking the advantages of both OFDM and CDMA concepts into account, in particular in dealing with frequency-selective fading and narrowband interference, while at the same time supporting multiple users. The following broad classes of hybrid OFDM-CDMA systems are described: multicarrier CDMA (MC-CDMA), OFDM-CDMA, and OFDM-CDMA-FH systems. In section on UWB communications, we describe the concepts and requirements as well as transmitter and receiver configurations. Further, various modulation formats, suitable for UWB communications, are described and categorized into time-domain category (pulse-position nodulation and pulse-duration modulation) and shape-based category [on-off keying, pulse-amplitude modulation, bi-phase modulation (BPM) or BPSK, and orthogonal pulse modulation]. Regarding the pulse shapes suitable for orthogonal pulse modulation (OPM), the modified Hermite polynomials, Legendre polynomials, and orthogonal prolate spheroidal wave functions (OPSWF) are described. Regarding the UWB channel models suitable for indoor applications, the model due to Saleh and Valenzuela is described. Both types of UWB systems are described: the impulse radio UWB (IR-UWB), typically DS-CDMA based, and multiband OFDM (MB-OFDM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Glisic S, Vucetic B (1997) Spread spectrum CDMA systems for wireless communications. Artech House, Inc, Boston/London

    Google Scholar 

  2. Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge, NY

    Book  Google Scholar 

  3. Proakis JG (2001) Digital communications, 4th edn. McGraw-Hill, Boston

    MATH  Google Scholar 

  4. Haykin S (2014) Digital communication systems. John Wiley & Sons, Hoboken

    Google Scholar 

  5. Verdú S (1998) Multiuser detection. Cambridge University Press, Cambridge, NY

    MATH  Google Scholar 

  6. Pickholtz R, Schilling D, Milstein L (1982) Theory of spread-spectrum communications – a tutorial. IEEE Trans Commun 30(5):855–884

    Article  Google Scholar 

  7. Tse D, Viswanath P (2005) Fundamentals of wireless communication. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  8. Sklar B (2001) Digital communications: fundamentals and applications, 2nd edn. Prentice-Hall, Inc., Upper Saddle River

    MATH  Google Scholar 

  9. Holmes JK, Chen CC (1977) Acquisition time performance of PN spread-spectrum systems. IEEE Trans Commun COM-25(8):778–784

    Article  MATH  Google Scholar 

  10. Simon MK, Omura JK, Scholtz RA, Levit BK (1985) Spread spectrum communications. Computer Science Press, Inc., Rockville

    Google Scholar 

  11. Torrieri D (2015) Principles of spread-spectrum communication systems, 3rd edn. Springer International Publishing, Switzerland

    Google Scholar 

  12. Ward RB (1965) Acquisition of pseudonoise signals by sequential estimation. IEEE Trans Commun Technol COM-13(4):475–483

    Article  Google Scholar 

  13. Price R, Green PE (1958) A communication technique for multipath channels. Proc IRE 46(3):555–570

    Article  Google Scholar 

  14. Turin GL (1980) Introduction to spread spectrum antimultipath techniques and their application in urban digital radio. Proc IEEE 68(3):328–353

    Article  Google Scholar 

  15. Sarwate DV, Pursley MB (1980) Crosscorrelation properties of pseudorandom and related sequences. Proc IEEE 68(5):593–619

    Article  Google Scholar 

  16. Golomb SW (2017) Shift register sequences: secure and limited-access code generators, efficiency code generators, prescribed property generators, mathematical models, 3rd Revised edn. World Scientific Publishing Co., Singapore

    Book  MATH  Google Scholar 

  17. Drajic DB (2003) Introduction to statistical theory of telecommunications. Akademska Misao, Belgrade. (In Serbian)

    Google Scholar 

  18. De Bruijn NG (1946) A combinatorial problem. Proc Koninklijke Nederlands Akademie wan Wetenschappen 49(2):758–764

    MATH  Google Scholar 

  19. Good IJ (1946) Normal recurring decimals. J London Math Soc 21(3):169–172

    MathSciNet  MATH  Google Scholar 

  20. Etzion T, Lempel A (1984) Algorithms for the generation of full-length shift-register sequences. IEEE Trans Inform Theory IT-30(3):480–484

    Article  MathSciNet  MATH  Google Scholar 

  21. Seay TS (1982) Hopping patterns for bounded mutual interference in frequency hopping multiple access. In: Proceedings of the IEEE military communications conference – progress in spread spectrum communications (MILCOM ‘82), pp. 22.3–1–22.3-6, Boston

    Google Scholar 

  22. Lempel A, Greenberger H (1974) Families of sequences with optimal Hamming correlation properties. IEEE Trans Inform Theory IT-20(1):90–94

    Article  MathSciNet  MATH  Google Scholar 

  23. Reed IS (1971) K-th order near-orthogonal codes. IEEE Trans Inform Theory IT-17(1):116–117

    Article  MathSciNet  MATH  Google Scholar 

  24. Solomon G (1973) Optimal frequency hopping sequences for multiple access. Proc Symp Spread Spectrum Commun 1:33–35

    Google Scholar 

  25. Popovic BM (1989) Comparative analysis of sequences for asynchronous code-division multiplex with frequency hopping, Master Thesis, University of Belgrade, Serbian. (in Serbian)

    Google Scholar 

  26. Shaar AA, Dvaiees PA (1984) A survey of one-coincidence sequences for frequency-hopped spread-spectrum systems. IEEE Proc Commun Radar Signal Process Part F 131(7):719–724

    Article  MathSciNet  Google Scholar 

  27. Welch LR (1974) Lower bounds on the maximum cross correlation of signals (Corresp.) IEEE Trans Inform Theory 20(3):397–399

    Article  MATH  Google Scholar 

  28. Gold R (1967) Optimal binary sequences for spread spectrum multiplexing (Corresp.) IEEE Trans Inform Theory 13(4):619–621

    Article  MathSciNet  MATH  Google Scholar 

  29. Gold R (1968) Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.) IEEE Trans Inform Theory 14(1):154–156

    Article  MATH  Google Scholar 

  30. Walsh JL (1923) A closed set of normal orthogonal functions. Amer J Math 45(1):5–24

    Article  MathSciNet  MATH  Google Scholar 

  31. Harmuth HF (1969) Applications of walsh functions in communications. IEEE Spectr 6(11):82–91

    Article  Google Scholar 

  32. Beauchamp KG (1975) Walsh functions and their applications. Academic Press, London

    MATH  Google Scholar 

  33. McDonough RN, Whalen AD (1995) Detection of signals in noise, 2nd edn. Academic Press, San Diego

    Google Scholar 

  34. Vasic B (2005) Digital Communications II, Lecture Notes

    Google Scholar 

  35. Verdú S (1984) Optimum multiuser signal detection, PhD dissertation, University of Illinois, Urbana-Champaign

    Google Scholar 

  36. Verdú S (1986) Minimum probability of error for asynchronous Gaussian multiple-access channels. IEEE Trans Inform Theory 32(1):85–96

    Article  MathSciNet  MATH  Google Scholar 

  37. Lupas R, Verdú S (1989) Linear multiuser detectors for synchronous code-division multiple-access channels. IEEE Trans Inform Theory 35(1):123–136

    Article  MathSciNet  MATH  Google Scholar 

  38. Verdú S (1993) Multiuser detection. In: Poor HV, Thomas JB (eds) Advances in statistical signal processing signal detection. JAI Press, Greenwich, pp 369–410

    Google Scholar 

  39. Verdú S (1989) Computational complexity of optimum multiuser detection. AIgorithmica 4:303–312

    Article  MathSciNet  MATH  Google Scholar 

  40. Verdú S (1986) Optimum multiuser asymptotic efficiency. IEEE Trans Commun COM-34:890–897

    Article  MathSciNet  MATH  Google Scholar 

  41. Verdú S (1986) Multiple-access channels with point-process observations: optimum demodulation. IEEE Trans Inform Theory IT-32:642–651

    Article  MATH  Google Scholar 

  42. Verdú S (1995) Adaptive multiuser detection. In: Glisic SG, Leppanen PA (eds) Code division multiple access communications. Kluwer Academic, The Netherlands

    Google Scholar 

  43. Duel-Hallen A, Holtzman J, Zvonar Z (1995) Multiuser detection for CDMA systems. IEEE Pers Commun 2(2):46–58

    Article  Google Scholar 

  44. Andrews JG (2005) Interference cancellation for cellular systems: a contemporary overview. IEEE Wirel Commun 12(2):19–29

    Article  Google Scholar 

  45. Yoon YC, Kohno R, Imai H (1993) A spread-spectrum multiaccess system with cochannel interference cancellation for multipath fading channels. IEEE J Sel Areas Commun 11(7):1067–1075

    Article  Google Scholar 

  46. Patel P, Holtzman J (1994) Analysis of a simple successive interference cancellation scheme in a DS/CDMA system. IEEE J Sel Areas Commun 12(5):796–807

    Article  Google Scholar 

  47. Divsalar D, Simon MK, Raphaeli D (1998) Improved parallel interference cancellation for CDMA. IEEE Trans Commun 46(2):258–268

    Article  Google Scholar 

  48. Varanasi MK, Aazhang B (1991) Near-optimum detection in synchronous code-division multiple access systems. IEEE Trans Commun 39:725–736

    Article  Google Scholar 

  49. Varanasi MK, Aazhang B (1990) Multistage detection in asynchronous code-division multiple-access communications. IEEE Trans Commun 38(4):509–519

    Article  Google Scholar 

  50. Luo J, Pattipati KR, Willett PK, Hasegawa F (2001) Near-optimal multiuser detection in synchronous CDMA using probabilistic data association. IEEE Commun Lett 5(9):361–363

    Article  Google Scholar 

  51. Wang X, Poor HV (2004) Wireless communication systems: advanced techniques for signal reception. Prentice-Hall, Emglewood Cliffs

    Google Scholar 

  52. Duel-Hallen A (1993) Decorrelating decision-feedback multiuser detector for synchronous code-division multiple-access channel. IEEE Trans Commun 41(2):285–290

    Article  MATH  Google Scholar 

  53. Duel-Hallen A (1995) A family of multiuser decision-feedback detectors for asynchronous code-division multiple-access channels. IEEE Trans Commun 43(2/3/4):421–434

    Article  Google Scholar 

  54. Prucnal P, Santoro M, Fan T (1986) Spread spectrum fiber-optic local area network using optical processing. J Lightw Technol 4(5):547–554

    Article  Google Scholar 

  55. Prucnal PR (2006) Optical code division multiple access: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  56. Salehi JA (1989) Code division multiple-access techniques in optical fiber networks-part I: fundamental principles. IEEE Trans Commun 37(8):824–833

    Article  Google Scholar 

  57. Fathallah H, Rusch LA, LaRochelle S (1999) Passive optical fast frequency-hop CDMA communication system. J Lightwave Technol 17:397–405

    Article  Google Scholar 

  58. Salehi JA, Chung FRK, Wei VK (1989) Optical orthogonal codes: design, analysis, and applications. IEEE Trans Inform Theory 35(3):595–605

    Article  MathSciNet  MATH  Google Scholar 

  59. Petrovic R (1990) Orthogonal codes for CDMA optical fiber LAN’s with variable bit interval. IEE Electron Lett 26(10):662–664

    Article  Google Scholar 

  60. Maric SV (1993) A new family of optical code sequences for use in spread-spectrum fiber-optic local area networks. IEEE Trans Commun 41(8):1217–1221

    Article  MATH  Google Scholar 

  61. Maric SV (1993) New family of algebraically designed optical orthogonal codes for use in CDMA fiber-optic networks. IEE Electron Lett 29(6):538–539

    Article  Google Scholar 

  62. Yang G-C, Kwong WC (1995) Performance analysis of optical CDMA with prime codes. IEE Electron Lett 31(7):569–570

    Article  Google Scholar 

  63. Wei Z, Ghafouri-Shiraz H (2002) Proposal of a novel code for spectral amplitude-coding optical CDMA systems. IEEE Photon Technol Lett 14:414–416

    Article  Google Scholar 

  64. Yengnarayanan S, Bhushan AS, Jalali B (2000) Fast wavelength-hopping time-spreading encoding/decoding for optical CDMA. IEEE Photon Technol Lett 12(5):573–575

    Article  Google Scholar 

  65. Huang W, Nizam MHM, Andonovic I, Tur M (2000) Coherent optical CDMA (OCDMA) systems used for high-capacity optical fiber networks-system description, OTDMA comparison, and OCDMA/WDMA networking. J Lightw Technol 18(6):765–778

    Article  Google Scholar 

  66. Djordjevic IB, Vasic B (2003) Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems. J Lightw Technol 21(9):1869–1875

    Article  Google Scholar 

  67. Djordjevic IB, Geraghty DF, Patil A, Chen CH, Kostuk R, Vasic B (2006) Demonstration of spectral-amplitude encoding/decoding for multimedia optical CDMA applications. J Optic Commun 27(2):121–124

    Google Scholar 

  68. Djordjevic IB, Vasic B (2003) Unipolar codes for spectral-amplitude-coding optical CDMA systems based on projective geometries. IEEE Photon Technol Lett 15(9):1318–1320

    Article  Google Scholar 

  69. Djordjevic IB, Vasic B (2004) Combinatorial constructions of optical orthogonal codes for OCDMA systems. IEEE Commun Lett 8(6):391–393

    Article  Google Scholar 

  70. Patil A, Djordjevic IB, Geraghty DF (2005) Performance assessment of optical CDMA systems based on wavelength-time codes from balanced incomplete block designs. In: Proceedings of the 7th international conference on telecommunications in modern satellite, cable and broadcasting services-TELSIKS 2005, pp 295–298, 28–30 Sept 2005, Nis, Serbia and Montenegro

    Google Scholar 

  71. Djordjevic IB, Vasic B, Rorison J (2004) Multi-weight unipolar codes for spectral-amplitude-coding optical CDMA systems. IEEE Commun Lett 8(4):259–261

    Article  Google Scholar 

  72. Djordjevic IB, Vasic B, Rorison J (2003) Design of multi-weight unipolar codes for multimedia optical CDMA applications based on pairwise balanced designs. IEEE/OSA J Lightw Technol 21(9):1850–1856

    Article  Google Scholar 

  73. Shivaleela ES, Sivarajan KN, Selvarajan A (1998) Design of a new family of two-dimensional codes for fiber-optic CDMA networks. J Lightw Technol 16(4):501–508

    Article  Google Scholar 

  74. Shivaleela ES, Selvarajan A, Srinivas T (2005) Two-dimensional optical orthogonal codes for fiber-optic CDMA networks. J Lightw Technol 23(2):647–654

    Article  Google Scholar 

  75. Tancevski L, Andonovic I, Budin J (1995) Secure optical network architectures utilizing wavelength hopping/time spreading codes. IEEE Photon Technol Lett 7(5):573–575

    Article  Google Scholar 

  76. Jankiraman M, Prasad R (1999) Hybrid CDMA/OFDM/SFH: a novel solution for wideband multimedia communications. In: Proceedings of the 4th ACTS mobile communication summit ‘99, Sorento, pp 1–7

    Google Scholar 

  77. Jankiraman M, Prasad R (2000) A novel solution to wireless multimedia application: the hybrid OFDM/CDMA/SFH approach, Proc. 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC 2000), 2: 1368–1374, London

    Google Scholar 

  78. Jankiraman M, Prasad R (2000) Wireless multimedia application: the hybrid OFDM/CDMA/SFH approach. In: Proceedings of the 2000 I.E. sixth international symposium on spread spectrum techniques and applications (ISSTA 2000), 2: 387–393, Parsippany

    Google Scholar 

  79. Van Nee R, Prasad R (2000) OFDM wireless multimedia communications. Artech House, Boston/London

    Google Scholar 

  80. Prasad R (2004) OFDM for wireless communications systems. Artech House, Boston/London

    Google Scholar 

  81. Yee N, Linnartz J-P, Fettweis G (1993) Multi-carrier CDMA in indoor wireless networks. In: Proceedings of the fourth international symposium on personal, indoor and mobile radio communications (PIMRC’93), pp. 109–113, Yokohama

    Google Scholar 

  82. Chouly A, Brajal A, Jourdan S (1993) Orthogonal multicarrier techniques applied to direct sequence spread spectrum CDMA systems. In: Proceedings IEEE global telecommunications conference 1993 (GLOBECOM '93), including a communications theory mini-conference, vol 3, pp 1723–1728, Houston

    Google Scholar 

  83. Fazel K (1993) Performance of CDMA/OFDM for mobile communication system. In: Proceedings of the 2nd IEEE international conference on universal personal communications, vol 2, pp 975–979, Ottawa

    Google Scholar 

  84. Nikookar H, Prasad R (2009) Introduction to ultra wideband for wireless communications. Springer Science & Business Media B.V, Dordrecht

    Google Scholar 

  85. Ghavami M, Michael LB, Kohno R (2007) Ultra wideband signals and systems in communication engineering. John Wiley & Sons Ltd, Chichester

    Book  Google Scholar 

  86. Siwiak K, McKeown D (2004) Ultra-wideband radio technology. John Wiley & Sons Ltd, Chichester

    Book  Google Scholar 

  87. Nekoogar F (2005) Ultra-wideband communications: fundamentals and applications. Prentice Hall Press, Upper Saddle River

    Google Scholar 

  88. Batra A, Balakrishnan J, Dabak A, Gharpurey R, Lin J, Fontaine P, Ho J-M, Lee S, Frechette M, March S, Yamaguchi H (2004) Multi-band OFDM physical layer proposal for IEEE 802.15 Task Group 3a, Doc. IEEE P802.15–03/268r3

    Google Scholar 

  89. Batra A, Balakrishnan J, Aiello GR, Foerster JR, Dabak A (2004) Design of a multiband OFDM system for realistic UWB channel environments. IEEE Trans Microw Theory Tech 52(9):2123–2138

    Article  Google Scholar 

  90. Shin O-O, Ghazzemzadeh SS, Greenstein LJ, Tarokh V (2005) Performance evaluation of MB-OFDM and DS-UWB systems for wireless personal area networks. In: Proceedings of the 2005 I.E. international conference on ultra-wideband, vol 1, pp 214–219, Zurich

    Google Scholar 

  91. Win MZ, Scholtz RA (2000) Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple–access communications. IEEE Trans Commun 48(4):679–691

    Article  Google Scholar 

  92. Png K-B, Peng X, Chin F (2004) Performance studies of a multi-band OFDM system using a simplified LDPC code. In: Proceedings of the 2004 international workshop on ultra wideband systems & 2004 conference on ultrawideband systems and technologies (UWBST & IWUWBS), vol 1, pp 376–380, Kyoto

    Google Scholar 

  93. Kim S-M, Tang J, Parhi KK (2005) Quasi-cyclic low-density parity-check coded multiband-OFDM UWB systems. In: Proceedings of the 2005 I.E. international symposium on circuits and systems, vol 1, pp 65–68, Kobe

    Google Scholar 

  94. Saleh AAM, Valenzuela R (1987) A statistical model for indoor multipath propagation. IEEE J Select Areas Commun 5(2):128–137

    Article  Google Scholar 

  95. Arfken GB, Weber HJ (2005) Mathematical methods for physicists, 6th edn. Elsevier/Academic Press, Amsterdam/Boston

    MATH  Google Scholar 

  96. Slepian D (1978) Prolate spheroidal wave functions, Fourier analysis and uncertainty V: the discrete case. Bell Syst Tech J 57:1371–1430

    Article  MATH  Google Scholar 

  97. Djordjevic IB (2013) On the irregular nonbinary QC-LDPC-coded hybrid multidimensional OSCD-modulation enabling beyond 100 Tb/s optical transport. IEEE/OSA J Lightw Technol 31(16):2969–2975

    Article  Google Scholar 

  98. Shieh W, Djordjevic I (2010) OFDM for optical communications. Elsevier/Academic, Amsterdam/Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Djordjevic, I.B. (2018). Spread Spectrum, CDMA, and Ultra-Wideband Communications. In: Advanced Optical and Wireless Communications Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-63151-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63151-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63150-9

  • Online ISBN: 978-3-319-63151-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics