Skip to main content

Donor Evaluation, Selection and Hematopoietic Stem Cell Mobilization, Procurement, and Manipulation

  • Chapter
  • First Online:
Hematopoietic Stem Cell Transplantation for the Pediatric Hematologist/Oncologist

Abstract

Donor selection for HSCT is determined by eligibility, suitability, and availability. Donor eligibility is mandated by the regulatory requirements designed to minimize the risk of transmitting infectious diseases from the donor blood product to the HSCT recipient. In contrast, donor suitability is a clinical concept: It involves the incorporation of various factors unique to hematopoietic stem cell transplantation (HSCT), with histocompatibility between the donor and recipient the most important. While many suitable donors may be technically “ineligible,” HSCT may proceed with proper documentation. The most common scenario is for autologous donors, for whom disease transmission into a disease-naïve donor is not an issue. Selection of a preferred donor must incorporate the availability of potential donors because HSCTs are often time sensitive. Hematopoietic stem cells (HSCs) can be harvested successfully from bone marrow, from umbilical cord blood (which is a rich source of HSCs), and from peripheral blood following cytokine stimulation +/− plerixafor. Each source has its unique set of advantages and drawbacks. Successful engraftment is dependent upon HSC dose which varies by HSC source. A minimum of 2–2.5 × 106 CD34+ cells/kg recipient weight is typically required for successful engraftment following bone marrow or peripheral stem cell transplantation. Minimal cell doses for umbilical cord blood are approximately tenfold lower (~2–2.5 × 107 total nucleated cells/kg recipient weight), which would typically contain ~2 x 10s CD34+ cells/kg recipient weight). Special processing may be required for some donor units; ABO incompatibility between the donor and recipient is one of the most common reasons for special processing. Cryopreservation can allow storage of HSC products for years or even decades. There are many reactions that can occur as a result of HSC infusions, and so careful observation and prompt intervention to treat any reactions are essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for industry: eligibility determination for donors of human cells, tissues, and cellular and tissue-based products (HCT/Ps); August, 2007. https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Tissue/UCM091345.pdf.

    Google Scholar 

  2. Foundation for the Accreditation of Cellular Therapy (FACT). International standards for hematopoietic cellular therapy product collection, processing, and administration. 6th ed; March, 2015.

    Google Scholar 

  3. Prasad VK, Kurtzberg J. Cord blood and bone marrow transplantation in inherited metabolic diseases: scientific basis, current status and future directions. Br J Haematol. 2010;148(3):356–72.

    Article  PubMed  Google Scholar 

  4. Kekre N, Tokessy M, Mallick R, McDiarmid S, Huebsch L, Bredeson C, Allan D, Tay J, Tinmouth A, Sheppard D. Is cytomegalovirus testing of blood products still needed for hematopoietic stem cell transplant recipients in the era of universal leukoreduction? Biol Blood Marrow Transplant. 2013;19(12):1719–24.

    Article  PubMed  Google Scholar 

  5. Anasetti C. Use of alternative donors for allogeneic stem cell transplantation. Hematology Am Soc Hematol Educ Program. 2015;2015(1):220–4. PubMed PMID: 26637725. Epub 2015/12/08.eng.

    PubMed  Google Scholar 

  6. Dehn J, Buck K, Maiers M, Confer D, Hartzman R, Kollman C, Schmidt AH, Yang SY, Setterholm M. 8/8 and 10/10 high-resolution match rate for the Be The Match unrelated donor registry. Biol Blood Marrow Transplant. 2015;21(1):137–41.

    Google Scholar 

  7. Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371(4):339–48. PubMed PMID: 25054717.

    Article  CAS  PubMed  Google Scholar 

  8. Justus D, Perez-Albuerne E, Dioguardi J, Jacobsohn D, Abraham A. Allogeneic donor availability for hematopoietic stem cell transplantation in children with sickle cell disease. Pediatr Blood Cancer. 2015;62(7):1285–7.

    Article  CAS  PubMed  Google Scholar 

  9. US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for industry: implementation of acceptable full-length and abbreviated donor history questionnaires and accompanying materials for use in screening donors of blood and blood components, May 2016. https://www.fda.gov/downloads/BiologicsBloodVaccines/Guidance ComplianceRegulatoryInformation/Guidances/Blood/UCM273685.pdf

    Google Scholar 

  10. AABB. Donor History Questionnaires. Available from: http://www.aabb.org/tm/questionnaires/Pages/default.aspx.

  11. Foundation for the Accreditation of Cellular Therapy. Hematopoietic progenitor cell, apheresis and marrow donor history questionnaire. Available from: http://www.factwebsite.org/Inner.aspx?id=163.

  12. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Donor screening recommendations to reduce the risk of transmission of Zika virus by human cells, tissues, and cellular and tissue-based products. Guidance for industry, March, 2016. https://www.fda.gov/downloads/biologicsbloodvaccines/guidancecomplianceregulatoryinformation/guidances/tissue/ucm488582.pdf

    Google Scholar 

  13. Department of Health and Human Services, Food and Drug Administration: Requirements for blood and blood components intended for transfusion or for further manufacturing use: final rule. Federal Register. 2015;80(99).

    Google Scholar 

  14. Chan TK, Tipoe GL. The policy statement of the American Academy of Pediatrics – children as hematopoietic stem cell donors – a proposal of modifications for application in the UK. BMC Med Ethics. 2013;14:43. PubMed PMID: 24176038. Pubmed Central PMCID: 4228464.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kesselheim JC, Lehmann LE, Styron NF, Joffe S. Is blood thicker than water?: ethics of hematopoietic stem cell donation by biological siblings of adopted children. Arch Pediatr Adolesc Med. 2009;163(5):413–6. PubMed PMID: 19414685

    Article  PubMed  Google Scholar 

  16. Pentz RD, Chan K, Neumann JL, Champlin RE, Korbling M. Designing an ethical policy for bone marrow donation by minors and others lacking capacity. Camb Q Healthc Ethics. 2004;13(2):149–55.

    Article  PubMed  Google Scholar 

  17. Pulsipher MA, Nagler A, Iannone R, Nelson RM. Weighing the risks of G-CSF administration, leukopheresis, and standard marrow harvest: ethical and safety considerations for normal pediatric hematopoietic cell donors. Pediatr Blood Cancer. 2006;46(4):422–33. PubMed PMID: 16411207.

    Article  PubMed  Google Scholar 

  18. American Academy of Pediatrics Committee on Bioethics. Children as hematopoietic stem cell donors. Pediatrics. 2010;125(2):392–404.

    Article  Google Scholar 

  19. Lasky LC, Bostrom B, Smith J, Moss TJ, Ramsay NK. Clinical collection and use of peripheral blood stem cells in pediatric patients. Transplantation. 1989;47(4):613–6. PubMed PMID: 2565052.

    Article  CAS  PubMed  Google Scholar 

  20. Takaue Y, Watanabe T, Kawano Y, Koyama T, Abe T, Suzue T, et al. Isolation and storage of peripheral blood hematopoietic stem cells for autotransplantation into children with cancer. Blood. 1989;74(4):1245–51. PubMed PMID: 2569899.

    CAS  PubMed  Google Scholar 

  21. Siena S, Bregni M, Brando B, Ravagnani F, Bonadonna G, Gianni AM. Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: enhancement by intravenous recombinant human granulocyte-macrophage colony-stimulating factor. Blood. 1989;74(6):1905–14. PubMed PMID: 2478216.

    CAS  PubMed  Google Scholar 

  22. Bensinger WI, Weaver CH, Appelbaum FR, Rowley S, Demirer T, Sanders J, et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood. 1995;85(6):1655–8. PubMed PMID: 7534140

    CAS  PubMed  Google Scholar 

  23. Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Loffler H, et al. G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft. Br J Haematol. 1994;87(3):609–13. PubMed PMID: 7527648

    Article  CAS  PubMed  Google Scholar 

  24. Fritsch G, Fischmeister G, Haas OA, Peters C, Gadner H, Strobl H, et al. Peripheral blood hematopoietic progenitor cells of cytokine-stimulated healthy donors as an alternative for allogeneic transplantation. Blood. 1994;83(11):3420–1. PubMed PMID: 7910766.

    CAS  PubMed  Google Scholar 

  25. Anderson KC. Autologous peripheral blood progenitor cell transplantation. J Clin Apher. 1995;10(3):131–8. PubMed PMID: 8582895.

    Article  CAS  PubMed  Google Scholar 

  26. Kurtzberg J, Prasad VK, Carter SL, Wagner JE, Baxter-Lowe LA, Wall D, et al. Results of the Cord Blood Transplantation Study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood. 2008;112(10):4318–27. PubMed PMID: 18723429. Pubmed Central PMCID: 2581998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiang KY, Haight A, Horan J, Olson E, Gartner A, Hartman D, et al. Clinical outcomes and graft characteristics in pediatric matched sibling donor transplants using granulocyte colony-stimulating factor-primed bone marrow and steady-state bone marrow. Pediatr Transplant. 2007;11(3):279–85. PubMed PMID: 17430483

    Article  PubMed  Google Scholar 

  28. Eapen M, Horowitz MM, Klein JP, Champlin RE, Loberiza FR Jr, Ringden O, et al. Higher mortality after allogeneic peripheral-blood transplantation compared with bone marrow in children and adolescents: the Histocompatibility and Alternate Stem Cell Source Working Committee of the International Bone Marrow Transplant Registry. J Clin Oncol. 2004;22(24):4872–80. PubMed PMID: 15520055.

    Article  PubMed  Google Scholar 

  29. Levine JE, Wiley J, Kletzel M, Yanik G, Hutchinson RJ, Koehler M, et al. Cytokine-mobilized allogeneic peripheral blood stem cell transplants in children result in rapid engraftment and a high incidence of chronic GVHD. Bone Marrow Transplant. 2000;25(1):13–8. PubMed PMID: 10654008.

    Article  CAS  PubMed  Google Scholar 

  30. Morton J, Hutchins C, Durrant S. Granulocyte-colony-stimulating factor (G-CSF)-primed allogeneic bone marrow: significantly less graft-versus-host disease and comparable engraftment to G-CSF-mobilized peripheral blood stem cells. Blood. 2001;98(12):3186–91. PubMed PMID: 11719353.

    Article  CAS  PubMed  Google Scholar 

  31. Schmitz N, Beksac M, Hasenclever D, Bacigalupo A, Ruutu T, Nagler A, et al. Transplantation of mobilized peripheral blood cells to HLA-identical siblings with standard-risk leukemia. Blood. 2002;100(3):761–7. PubMed PMID: 12130483.

    Article  CAS  PubMed  Google Scholar 

  32. Shinzato A, Tabuchi K, Atsuta Y, Inoue M, Inagaki J, Yabe H, et al. PBSCT is associated with poorer survival and increased chronic GvHD than BMT in Japanese paediatric patients with acute leukaemia and an HLA-matched sibling donor. Pediatr Blood Cancer. 2013;60(9):1513–9. PubMed PMID: 23512888.

    Article  PubMed  Google Scholar 

  33. Styczynski J, Balduzzi A, Gil L, Labopin M, Hamladji RM, Marktel S, et al. Risk of complications during hematopoietic stem cell collection in pediatric sibling donors: a prospective European Group for Blood and Marrow Transplantation Pediatric Diseases Working Party study. Blood. 2012;119(12):2935–42. PubMed PMID: 22160619.

    Article  CAS  PubMed  Google Scholar 

  34. National Marrow Donor Program. An instructional video illustrating the marrow harvest procedure has been prepared by the National Marrow Donor Program. Available from: https://network.bethematchclinical.org/Education/Apheresis-and-Collection-Centers/AC-and-CC-Staff-Training/Marrow-Collection-Procedures-Video/.

  35. Blacklock HA, Gilmore MJ, Prentice HG, Hazlehurst GR, Evans JP, Ma DD, et al. ABO-incompatible bone-marrow transplantation: removal of red blood cells from donor marrow avoiding recipient antibody depletion. Lancet. 1982;2(8307):1061–4. PubMed PMID: 6127543.

    Article  CAS  PubMed  Google Scholar 

  36. Sorg N, Poppe C, Bunos M, Wingenfeld E, Hummer C, Kramer A, et al. Red blood cell depletion from bone marrow and peripheral blood buffy coat: a comparison of two new and three established technologies. Transfusion. 2015;55(6):1275–82. PubMed PMID: 25647556.

    Article  CAS  PubMed  Google Scholar 

  37. Frangoul H, Nemecek ER, Billheimer D, Pulsipher MA, Khan S, Woolfrey A, et al. A prospective study of G-CSF primed bone marrow as a stem-cell source for allogeneic bone marrow transplantation in children: a Pediatric Blood and Marrow Transplant Consortium (PBMTC) study. Blood. 2007;110(13):4584–7. PubMed PMID: 17827386.

    Article  CAS  PubMed  Google Scholar 

  38. Pession A, Locatelli F, Prete A, Pigna A, Magrini E, Conte R, et al. G-CSF in an infant donor: a method of reducing harvest volume in bone marrow transplantation. Bone Marrow Transplant. 1996;17(3):431–2. PubMed PMID: 8704700.

    CAS  PubMed  Google Scholar 

  39. Zaucha JM, Knopinska-Posluszny W, Bieniaszewska M, Mysliwski A, Hellmann A. The effect of short G-CSF administration on the numbers and clonogenic efficiency of hematopoietic progenitor cells in bone marrow and peripheral blood of normal donors. Ann Transplant. 2000;5(4):20–6. PubMed PMID: 11499355.

    CAS  PubMed  Google Scholar 

  40. Makar RS, Padmanabhan A, Kim HC, Anderson C, Sugrue MW, Linenberger M. Use of laboratory tests to guide initiation of autologous hematopoietic progenitor cell collection by apheresis: results from the multicenter hematopoietic progenitor cell collection by Apheresis Laboratory Trigger Survey. Transfus Med Rev. 2014;28(4):198–204. PubMed PMID: 25311468.

    Article  PubMed  Google Scholar 

  41. Cousins AF, Sinclair JE, Alcorn MJ, Green RHA, Douglas KW. HPC-A dose prediction on the Optia(R) cell separator based on a benchmark CE2 collection efficiency: promoting clinical efficiency, minimizing toxicity, and allowing quality control. J Clin Apher. 2015;30(6):321–8. PubMed PMID: 25619791.

  42. Kim HC. Therapeutic pediatric apheresis. J Clin Apher. 2000;15(1–2):129–57. PubMed PMID: 10767053.

    Article  CAS  PubMed  Google Scholar 

  43. Veljkovic D, Vujic D, Nonkovic OS, Jevtic D, Zecevic Z, Lazic E. Mobilization and harvesting of peripheral blood stem cells in pediatric patients with solid tumors. Ther Apher Dial. 2011;15(6):579–86. PubMed PMID: 22107695.

    Article  CAS  PubMed  Google Scholar 

  44. Cooling L, Hoffmann S, Webb D, Meade M, Yamada C, Davenport R, et al. Procedure-related complications and adverse events associated with pediatric autologous peripheral blood stem cell collection. J Clin Apher. 2017; 32(1):35-48. PubMed PMID: 27092461.

  45. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med. 1999;341(16):1165–73. PubMed PMID: 10519894.

    Article  CAS  PubMed  Google Scholar 

  46. Romeo C, Li Q, Copeland L. Severe pegfilgrastim-induced bone pain completely alleviated with loratadine: a case report. J Oncol Pharm Pract. 2015;21(4):301–4. PubMed PMID: 24664474.

    Article  CAS  PubMed  Google Scholar 

  47. Maschan AA, Balashov DN, Kurnikova EE, Trakhtman PE, Boyakova EV, Skorobogatova EV, et al. Efficacy of plerixafor in children with malignant tumors failing to mobilize a sufficient number of hematopoietic progenitors with G-CSF. Bone Marrow Transplant. 2015;50(8):1089–91. PubMed PMID: 25915808.

    Article  CAS  PubMed  Google Scholar 

  48. Worel N, Apperley JF, Basak GW, Douglas KW, Gabriel IH, Geraldes C, et al. European data on stem cell mobilization with plerixafor in patients with nonhematologic diseases: an analysis of the European consortium of stem cell mobilization. Transfusion. 2012;52(11):2395–400. PubMed PMID: 22414093.

    Article  PubMed  Google Scholar 

  49. Salazar-Riojas R, Garcia-Lozano JA, Valdes-Galvan M, Martinez-Gonzalez O, Cantu-Rodriguez OG, Gonzalez-Llano O, et al. Effective collection of peripheral blood stem cells in children weighing 20 kilogram or less in a single large-volume apheresis procedure. J Clin Apher. 2015;30(5):281–7. PubMed PMID: 25557252.

    Article  PubMed  Google Scholar 

  50. Buckner CD, Clift RA, Sanders JE, Stewart P, Bensinger WI, Doney KC, et al. Marrow harvesting from normal donors. Blood. 1984;64(3):630–4. PubMed PMID: 6380620.

    CAS  PubMed  Google Scholar 

  51. Favre G, Beksac M, Bacigalupo A, Ruutu T, Nagler A, Gluckman E, et al. Differences between graft product and donor side effects following bone marrow or stem cell donation. Bone Marrow Transplant. 2003;32(9):873–80. PubMed PMID: 14561987.

    Article  CAS  PubMed  Google Scholar 

  52. Kanda J, Ichinohe T, Matsuo K, Benjamin RJ, Klumpp TR, Rozman P, et al. Impact of ABO mismatching on the outcomes of allogeneic related and unrelated blood and marrow stem cell transplantations for hematologic malignancies: IPD-based meta-analysis of cohort studies. Transfusion. 2009;49(4):624–35. PubMed PMID: 19170998.

    Article  PubMed  Google Scholar 

  53. Klumpp TR, Herman JH, Ulicny J, Emmons RV, Martin ME, Mangan KF. Lack of effect of donor-recipient ABO mismatching on outcome following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2006;38(9):615–20. PubMed PMID: 16964267.

    Article  CAS  PubMed  Google Scholar 

  54. Griffith LM, McCoy JP Jr, Bolan CD, Stroncek DF, Pickett AC, Linton GF, et al. Persistence of recipient plasma cells and anti-donor isohaemagglutinins in patients with delayed donor erythropoiesis after major ABO incompatible non-myeloablative haematopoietic cell transplantation. Br J Haematol. 2005;128(5):668–75. PubMed PMID: 15725089.

    Article  CAS  PubMed  Google Scholar 

  55. Alonso JM 3rd, Regan DM, Johnson CE, Oliver DA, Fegan R, Lasky LC, et al. A simple and reliable procedure for cord blood banking, processing, and freezing: St Louis and Ohio Cord Blood Bank experiences. Cytotherapy. 2001;3(6):429–33. PubMed PMID: 11953027.

    Article  PubMed  Google Scholar 

  56. Basford C, Forraz N, Habibollah S, Hanger K, McGuckin CP. Umbilical cord blood processing using Prepacyte-CB increases haematopoietic progenitor cell availability over conventional Hetastarch separation. Cell Prolif. 2009;42(6):751–61. PubMed PMID: 19758367.

    Article  CAS  PubMed  Google Scholar 

  57. Solves P, Mirabet V, Blanquer A, Delgado-Rosas F, Planelles D, Andrade M, et al. A new automatic device for routine cord blood banking: critical analysis of different volume reduction methodologies. Cytotherapy. 2009;11(8):1101–7. PubMed PMID: 19929473.

    Article  CAS  PubMed  Google Scholar 

  58. Almici C, Carlo-Stella C, Mangoni L, Garau D, Cottafavi L, Ventura A, et al. Density separation of umbilical cord blood and recovery of hemopoietic progenitor cells: implications for cord blood banking. Stem Cells. 1995;13(5):533–40. PubMed PMID: 8528103.

    Article  CAS  PubMed  Google Scholar 

  59. Warkentin PI, Hilden JM, Kersey JH, Ramsay NK, McCullough J. Transplantation of major ABO-incompatible bone marrow depleted of red cells by hydroxyethyl starch. Vox Sang. 1985;48(2):89–104. PubMed PMID: 2416122.

    Article  CAS  PubMed  Google Scholar 

  60. Larghero J, Rea D, Esperou H, Biscay N, Maurer MN, Lacassagne MN, et al. ABO-mismatched marrow processing for transplantation: results of 114 procedures and analysis of immediate adverse events and hematopoietic recovery. Transfusion. 2006;46(3):398–402. PubMed PMID: 16533282.

    Article  CAS  PubMed  Google Scholar 

  61. Guttridge MG, Sidders C, Booth-Davey E, Pamphilon D, Watt SM. Factors affecting volume reduction and red blood cell depletion of bone marrow on the COBE Spectra cell separator before haematopoietic stem cell transplantation. Bone Marrow Transplant. 2006;38(3):175–81. PubMed PMID: 16770313.

    Article  CAS  PubMed  Google Scholar 

  62. Daniel-Johnson J, Schwartz J. How do I approach ABO-incompatible hematopoietic progenitor cell transplantation? Transfusion. 2011;51(6):1143–9. PubMed PMID: 21382041.

    Article  PubMed  Google Scholar 

  63. Anasetti C, Beatty PG, Storb R, Martin PJ, Mori M, Sanders JE, et al. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol. 1990;29(2):79–91. PubMed PMID: 2249952. Epub 1990/10/01. eng.

    Article  CAS  PubMed  Google Scholar 

  64. Szydlo R, Goldman JM, Klein JP, Gale RP, Ash RC, Bach FH, et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol. 1997;15(5):1767–77. PubMed PMID: 9164184. Epub 1997/05/01. eng

    Article  CAS  PubMed  Google Scholar 

  65. Kernan NA, Flomenberg N, Dupont B, O’Reilly RJ. Graft rejection in recipients of T-cell-depleted HLA-nonidentical marrow transplants for leukemia. Identification of host-derived antidonor allocytotoxic T lymphocytes. Transplantation. 1987;43(6):842–7. PubMed PMID: 3296349.

    Article  CAS  PubMed  Google Scholar 

  66. Ash RC, Horowitz MM, Gale RP, van Bekkum DW, Casper JT, Gordon-Smith EC, et al. Bone marrow transplantation from related donors other than HLA-identical siblings: effect of T cell depletion. Bone Marrow Transplant. 1991;7(6):443–52. PubMed PMID: 1873591. Epub 1991/06/01. eng

    CAS  PubMed  Google Scholar 

  67. Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339(17):1186–93. PubMed PMID: 9780338. Epub 1998/10/22. eng

    Article  CAS  PubMed  Google Scholar 

  68. Aversa F, Terenzi A, Tabilio A, Falzetti F, Carotti A, Ballanti S, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(15):3447–54. PubMed PMID: 15753458. Epub 2005/03/09. eng

    Article  Google Scholar 

  69. Im HJ, Koh KN, Seo JJ. Recent advances in haploidentical hematopoietic stem cell transplantation using ex vivo T cell-depleted graft in children and adolescents. Blood Res. 2016;51(1):8–16. PubMed PMID: 27104186. Pubmed Central PMCID: PMC4828537.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lang P, Feuchtinger T, Teltschik HM, Schwinger W, Schlegel P, Pfeiffer M, et al. Improved immune recovery after transplantation of TCRalphabeta/CD19-depleted allografts from haploidentical donors in pediatric patients. Bone Marrow Transplant. 2015;50(Suppl 2):S6–10. PubMed PMID: 26039210.

    Article  CAS  PubMed  Google Scholar 

  71. Ponce DM, Eapen M, Sparapani R, O’Brien TA, Chan KW, Chen J, et al. In vivo T cell depletion with myeloablative regimens on outcomes after cord blood transplantation for acute lymphoblastic leukemia in children. Biol Blood Marrow Transplant. 2015;21(12):2173–9. PubMed PMID: 26327630. Pubmed Central PMCID: PMC4639413.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Atta EH, de Oliveira DC, Bouzas LF, Nucci M, Abdelhay E. Less graft-versus-host disease after rabbit antithymocyte globulin conditioning in unrelated bone marrow transplantation for leukemia and myelodysplasia: comparison with matched related bone marrow transplantation. PLoS One. 2014;9(9):e107155. PubMed PMID: 25188326. Pubmed Central PMCID: PMC4154845.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kroger N, Solano C, Wolschke C, Bandini G, Patriarca F, Pini M, et al. Antilymphocyte globulin for prevention of chronic graft-versus-host disease. N Engl J Med. 2016;374(1):43–53. PubMed PMID: 26735993.

    Article  PubMed  Google Scholar 

  74. Marsh RA, Lane A, Mehta PA, Neumeier L, Jodele S, Davies SM, et al. Alemtuzumab levels impact acute GVHD, mixed chimerism, and lymphocyte recovery following alemtuzumab, fludarabine, and melphalan RIC HCT. Blood. 2016;127(4):503–12. PubMed PMID: 26644451.

    Article  CAS  PubMed  Google Scholar 

  75. Saif MA, Borrill R, Bigger BW, Lee H, Logan A, Poulton K, et al. In vivo T-cell depletion using alemtuzumab in family and unrelated donor transplantation for pediatric non-malignant disease achieves engraftment with low incidence of graft vs. host disease. Pediatr Transplant. 2015;19(2):211–8. PubMed PMID: 25546609.

    Article  CAS  PubMed  Google Scholar 

  76. Al-Homsi AS, Roy TS, Cole K, Feng Y, Duffner U. Post-transplant high-dose cyclophosphamide for the prevention of graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21(4):604–11. PubMed PMID: 25240817.

    Article  CAS  PubMed  Google Scholar 

  77. Berger M, Lanino E, Cesaro S, Zecca M, Vassallo E, Faraci M, et al. Feasibility and outcome of haploidentical hematopoietic stem cell transplantation with post-transplant high-dose cyclophosphamide for children and adolescents with hematologic malignancies: an AIEOP-GITMO retrospective multicenter study. Biol Blood Marrow Transplant. 2016;22(5):902–9. PubMed PMID: 26860636.

    Article  CAS  PubMed  Google Scholar 

  78. Dufort G, Castillo L, Pisano S, Castiglioni M, Carolina P, Andrea I, et al. Haploidentical hematopoietic stem cell transplantation in children with high-risk hematologic malignancies: outcomes with two different strategies for GvHD prevention. Ex vivo T-cell depletion and posttransplant cyclophosphamide: 10 years of experience at a single center. Bone Marrow Transplant. 2016; 51(10):1354-1360. PubMed PMID: 27272446.

  79. Robinson TM, O’Donnell PV, Fuchs EJ, Luznik L. Haploidentical bone marrow and stem cell transplantation: experience with post-transplantation cyclophosphamide. Semin Hematol. 2016;53(2):90–7. PubMed PMID: 27000732. Pubmed Central PMCID: PMC4806368.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Klein OR, Chen AR, Gamper C, Loeb D, Zambidis E, Llosa N, et al. Alternative-donor hematopoietic stem cell transplantation with post-transplantation cyclophosphamide for nonmalignant disorders. Biol Blood Marrow Transplant. 2016;22(5):895–901. PubMed PMID: 26860634. Pubmed Central PMCID: PMC4898048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kanakry CG, Tsai HL, Bolanos-Meade J, Smith BD, Gojo I, Kanakry JA, et al. Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. Blood. 2014;124(25):3817–27. PubMed PMID: 25316679. Pubmed Central PMCID: PMC4263989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fois E, Desmartin M, Benhamida S, Xavier F, Vanneaux V, Rea D, et al. Recovery, viability and clinical toxicity of thawed and washed haematopoietic progenitor cells: analysis of 952 autologous peripheral blood stem cell transplantations. Bone Marrow Transplant. 2007;40(9):831–5. PubMed PMID: 17724443.

    Article  CAS  PubMed  Google Scholar 

  83. Vosganian GS, Waalen J, Kim K, Jhatakia S, Schram E, Lee T, et al. Effects of long-term cryopreservation on peripheral blood progenitor cells. Cytotherapy. 2012;14(10):1228–34. PubMed PMID: 22900962.

    Article  CAS  PubMed  Google Scholar 

  84. Reich-Slotky R, Colovai AI, Semidei-Pomales M, Patel N, Cairo M, Jhang J, et al. Determining post-thaw CD34+ cell dose of cryopreserved haematopoietic progenitor cells demonstrates high recovery and confirms their integrity. Vox Sang. 2008;94(4):351–7. PubMed PMID: 18179677.

    Article  CAS  PubMed  Google Scholar 

  85. Shu Z, Heimfeld S, Gao D. Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant. 2014;49(4):469–76. PubMed PMID: 24076548. Pubmed Central PMCID: PMC4420483.

    Article  CAS  PubMed  Google Scholar 

  86. Truong TH, Moorjani R, Dewey D, Guilcher GM, Prokopishyn NL, Lewis VA. Adverse reactions during stem cell infusion in children treated with autologous and allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51(5):680–6. PubMed PMID: 26752147.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Ferguson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ferguson, W., Babic, A. (2018). Donor Evaluation, Selection and Hematopoietic Stem Cell Mobilization, Procurement, and Manipulation. In: Brown, V. (eds) Hematopoietic Stem Cell Transplantation for the Pediatric Hematologist/Oncologist. Springer, Cham. https://doi.org/10.1007/978-3-319-63146-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63146-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63144-8

  • Online ISBN: 978-3-319-63146-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics