Skip to main content

Sustainable Energy Harvesting Using Efficient α-Fe2O3 Photoanode Through Photocatalytic Water Splitting Using Facile Chemical Route

  • Conference paper
  • First Online:
Nanotechnology for Energy and Water (ICNEW 2017)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

  • 692 Accesses

Abstract

Here, a simple, controlled and cost effective electrodeposition technique was used to synthesize α-Fe2O3 hematite photo-electrode for solar water splitting. We have synthesized thin films of α-Fe2O3 by varying electrodeposition potential from −0.2 to 0 V at optimum conditions of cycles by using potentiostat. The obtained ferrihydrite thin films were transformed into α-Fe2O3 thin films by annealing them at 600 °C for 1 h. Films were investigated by XRD, SEM, UV-Visible and Raman spectroscopy for their structural, optical and morphological properties. Further suitability of α-Fe2O3 thin films as a photo-electrode has been evaluated by photoelectrochemical (PEC) measurements which exhibited photocurrent density of 65 µA/cm2 at 0.5 V versus SCE under AM 1.5 100 mW/cm2 illumination. The effective enhancement in photocurrent conversion efficiency with optimum film thickness has been observed upon light irradiation. The absorption spectrum of the α-Fe2O3 shows significant absorption in the visible region. However, photo-conversion efficiency is quite low. The obtained results suggest that the well controlled thick α-Fe2O3 material can be utilized as a shell layer with wide band gap nano-structured semiconductor like ZnO, TiO2 to form hetero-structure for solar water splitting application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Nowotny, C. Sorrell, L. Sheppard, T. Bak, Solar-hydrogen: environmentally safe fuel for the future. Int. J. Hydrogen Energy 30(5), 521–544 (2005), doi:10.1016/j.ijhydene.2004.06.012

  2. A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). doi:10.1038/238037a0

    Article  Google Scholar 

  3. A. Kay, I. Cesar, M. Gratzel, New benchmark for water photooxidation by nanostructured -Fe2O3 films. J. Am. Chem. Soc. 128(49), 15714–15721 (2006). doi:10.1021/ja064380l

    Article  Google Scholar 

  4. F.L. Souza, K.P. Lopes, E. Longo, E.R. Leite, The influence of the film thickness of nanostructured -Fe2O3 on water photooxidation. Phys. Chem. Chem. Phys. 11(8), 1215–1219 (2009). doi:10.1039/B811946E

    Article  Google Scholar 

  5. J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6(1), 24–28 (2006). doi:10.1021/nl051807y

    Article  Google Scholar 

  6. D.K. Zhong, M. Cornuz, K. Sivula, M. Gratzel, D.R. Gamelin, Photo-assisted electrodeposition of cobalt- phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci 4(5), 1759–1764 (2011), doi:10.1039/C1EE01034D

  7. M. Chen, W. Li, X. Shen, G. Diao, Fabrication of core-shell α-fe2o3@ Li4Ti5O12 composite and its application in the lithium ion batteries. ACS Appl. Mater. Interfaces. 6(6), 4514–4523 (2014). doi:10.1021/am500294m

    Article  Google Scholar 

  8. X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4), 3333–3338 (2011). doi:10.1021/nn200493r

    Article  Google Scholar 

  9. Shao X. Zhao, Y. Zhang, X. Qian, Fe2O3/reduced graphene oxide/Fe2O3 composite in situ grown on Fe foil for high-performance supercapacitors. ACS Appl. Mater. Interfaces 8(44), 30133–30142 (2016). doi:10.1021/acsami.6b09594

    Article  Google Scholar 

  10. S. Jana, A. Mondal, Fabrication of SnO2/α-Fe2O3, SnO2/ α-Fe2O3-PB heterostructure thin films: Enhanced photodegradation and peroxide sensing. ACS Appl. Mater. Interfaces. 6(18), 15832–15840 (2014). doi:10.1021/am5030879

    Article  Google Scholar 

  11. J. Krysa, M. Zlamala, S. Kmentb, Z. Hubickab, Photo-electrochemical properties of wo3 and α-Fe2O3 thin films. Chem. Eng. Trans., 41 (2014) doi:10.3303/CET1441064

  12. M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu, Y. Wang, Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of sno2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano 4(2), 681–688 (2010). doi:10.1021/nn901119a

    Article  Google Scholar 

  13. Z. Wei, R. Xing, X. Zhang, S. Liu, H. Yu, P. Li, Facile template-free fabrication of hollow nestlike α-Fe2O3 nanostructures for water treatment. ACS Appl. Mater. Interfaces. 5(3), 598–604 (2012). doi:10.1021/am301950k

    Article  Google Scholar 

  14. L.S. Zhong, J.S. Hu, H.P. Liang, W.G. Song, L.J. Wan, Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18(18), 2426–2431 (2006). doi:10.1002/adma.200600504

    Article  Google Scholar 

  15. K. Sivula, F.L. Formal, M. Gratzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelec-trodes. Chem Sus Chem 4(4), 432–449 (2011). doi:10.1002/cssc.201000416

    Article  Google Scholar 

  16. A. Murphy, P. Barnes, L. Randeniya, I. Plumb, I. Grey, M. Horne, Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31(14), 1999–2017 (2006). doi:10.1016/j.ijhydene.2006.01.014

    Article  Google Scholar 

  17. A. Chai, J. Peng, B. Yan, Characterization of α-Fe2O3 thin films deposited by atmospheric pressure CVD onto alumina substrates. Sensors and Actuators B: Chemical 34(1-3), 412–416 (1996). doi:10.1016/S0925-4005(97)80014-7

    Article  Google Scholar 

  18. Y. Zhu, Y. Qian, M. Zhang, Z. Chen, D. Xu, L. Yang, Preparation and characterization of nanocrystalline powders of cuprous oxide by using ϒ-radiation. Mater. Res. Bull. 29(4), 377–383 (1994). doi:10.1016/0025-5408(94)90070-1

    Article  Google Scholar 

  19. S. Joshi, R. Nawathey, V. Koinkar, V. Godbole, S. Chaudhari, S. Ogale, S. Date, Pulsed laser deposition of iron oxide and ferrite films. J. Appl. Phys. 64(10), 5647–5649 (1988). doi:10.1063/1.342258

    Article  Google Scholar 

  20. S. Wilhelm, K. Yun, L. Ballenger, N. Hackerman, Semiconductor properties of iron oxide electrodes. J. Electrochem. Soc. 126(3), 419–424 (1979). doi:10.1149/1.2129055

    Article  Google Scholar 

  21. Q. Chen, Y. Qian, H. Qian, Z. Chen, W. Wu, Y. Zhang, Preparation and characterization of iron (iii) oxide (α-Fe2O3) thin films hydrothermally. Mater. Res. Bull. 30(4), 443–446 (1995). doi:10.1016/0025-5408(95)00028-3

    Article  Google Scholar 

  22. Y. Xie, W. Wang, Y. Qian, L. Yang, Z. Chen, Deposition and microstructural characterization of NiO thin films by a spray pyrolysis method. J. Cryst. Growth 167(3-4), 656–659 (1996). doi:10.1016/0022-0248(96)00285-0

    Article  Google Scholar 

  23. M. Mahadik, S. Shinde, V. Mohite, S. Kumbhar, A. Moholkar, J. Kim, C. Bhosale, Photoelectrocatalytic oxidation of rhodamine B with sprayed α-Fe2O3 photocatalyst. Mater. Express 3(3), 247–255 (2013). doi:10.1166/mex.2013.1120

    Article  Google Scholar 

  24. M.P. Dare-Edwards, J.B. Goodenough, A. Hamnett, P.R. Trevellick, Electrochemistry and photoelectro-chemistry of iron (III) oxide. J. Chem. Soc., Faraday Trans. 1 79/9:2027–2041 (1983) doi:10.1039/F19837902027

  25. J.H. Kennedy, K.W. Frese, Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125(5), 709–714 (1978). doi:10.1149/1.2131532

    Article  Google Scholar 

  26. J. Krysa, M. Zlamal, S. Kment, M. Brunclikova, Z. Hubicka, TiO2 and Fe2O3 films for photoelectrochemical water splitting. Molecules 20(1), 1046–1058 (2015). doi:10.3390/molecules20011046

    Article  Google Scholar 

  27. Q. Wei, Z. Zhang, Z. Li, Q. Zhou, Y. Zhu, Enhanced photocatalytic activity of porous α-Fe2O3 films prepared by rapid thermal oxidation. J. Phys. D Appl. Phys. 41(20), 202002 (2008). doi:10.1088/0022-3727/41/20/202002

    Article  Google Scholar 

  28. X. Hu, J.C. Yu, J. Gong, Fast production of self-assembled hierarchical α-Fe2O3 nanoarchitectures. J Phys Chem C 111(30), 11180–11185 (2007). doi:10.1021/jp073073e

    Article  Google Scholar 

  29. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569–585 (1972). doi:10.1016/0022-3093/72:90194-9

    Article  Google Scholar 

  30. A. Mayabadi, A. Pawbake, S. Rondiya, A. Rokade, R. Waykar, A. Jadhavar, A. Date, V. Sharma, M. Prasad, H. Pathan, S. Jadkar, Synthesis, characterization, and photovoltaic properties of TiO2/CdTe core-shell heterostructure for semiconductor-sensitized solar cells (SSSCs). J Solid State Electrochem, 1–12 (2016), doi:10.1007/s10008-016-3473-3

  31. M.M. Ba-Abbad, M.S. Takri, A. Benamor, A.W. Mohammad, Size and shape controlled of α-Fe2O3 nanoparticles prepared via sol-gel technique and their photocatalytic activity. J Sol-Gel Sci. Technol 81(3), 880–893 (2016). doi:10.1007/s10971-016-4228-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandesh Jadkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Rokade, A., Sharma, V., Prasad, M., Jadkar, S. (2018). Sustainable Energy Harvesting Using Efficient α-Fe2O3 Photoanode Through Photocatalytic Water Splitting Using Facile Chemical Route. In: Anand, G., Pandey, J., Rana, S. (eds) Nanotechnology for Energy and Water . ICNEW 2017. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-63085-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63085-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63084-7

  • Online ISBN: 978-3-319-63085-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics