Skip to main content

FDOA Determination of Velocities and Emission Frequencies of Passive Radiotransmitters in Space

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2016 (ECMI 2016)

Part of the book series: Mathematics in Industry ((TECMI,volume 26))

Included in the following conference series:

  • 1059 Accesses

Abstract

Two systems of FDOA equations are introduced to determine in real time the velocities of passive, i.e. non-cooperative, radiotransmitters at the emission instants of the signals, together with the frequencies of emission. The systems correspond to the Newtonian and post-Newtonian frameworks of the Earth surrounding space. The transmitters may be located on the Earth surface or in space. Each system yields accurate unique solutions at the corresponding level of approximation, provided that the locations are determined by appropriated TDOA measurements. The systems are derived by means of Synge’s world functions for the vicinity of the Earth, since it allows to clearly identify the post-Newtonian corrections due to the Earth tidal potential and to the gravitational signals’ time delays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahder, T.B.: Navigation in curved space-time. Am. J. Phys. 69, 315–321 (2001)

    Google Scholar 

  2. Clarke, C.J.S.: Synge world function. In: Encyclopedia of Mathematics. Springer, Berlin (2011). http://www.encyclopediaofmath.org/index.php?title=Synge_world_function&oldid=18235

  3. Gambi, J.M., Rodriguez-Teijeiro, M.C., García del Pino, M.L., Salas, M.: Shapiro time-delay within the geolocation problem by TDOA. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1948–1962 (2011)

    Google Scholar 

  4. Gambi, J.M., Rodriguez-Teijeiro, M.C., García del Pino, M.L.: The post-Newtonian geolocation problem by TDOA. In: M. Günter, A. Bartel, M. Brunk, S. Schöps, M. Striebel (eds.) Progress in Industrial Mathematics at ECMI 2010. Mathematics in Industry, vol. 17, pp. 489–495. Springer, Berlin (2012)

    Chapter  Google Scholar 

  5. Gambi, J.M., Clares, J., García del Pino, M.L.: FDOA post-Newtonian equations for the location of passive emitters placed in the vicinity of the earth. Aerosp. Sci. Technol. 46, 137–145 (2015)

    Google Scholar 

  6. Gambi, J.M., Rodriguez-Teijeiro, M.C., García del Pino, M.L.: Newtonian and post-Newtonian passive geolocation by TDOA. Aerosp. Sci. Technol. 51, 18–25 (2016)

    Google Scholar 

  7. Gambi, J.M., Clares, J., Rodriguez-Teijeiro, M.C.: Post-Newtonian geolocation of passive radio transmitters by TDOA and FDOA. In: G.R. Russo, V. Capasso, G. Nicosia, V. Romano (eds.) Progress in Industrial Mathematics at ECMI 2014. Mathematics in Industry, vol. 21. Springer, Berlin (2016)

    Google Scholar 

  8. Hazewinkel, M.: Synge world function. In: Hazewinkel, M. (ed.) Encyclopaedia of Mathematics: Supplement, vol. 1, pp. 464–465. Kluwer Academic Pub., Dordrecht (2012)

    Google Scholar 

  9. Synge, J.L.: Relativity: The General Theory, chap. 2. North-Holland, Amsterdam (1960)

    Google Scholar 

  10. Teyssandier, P., Le Poncin-Lafitte, C., Linet, B.: A universal tool for determining the time delay and the frequency shift of light: Synge’s world function. In: H. Dittus, C. Lämmerzahl, S.G. Turyshev (eds.) Lasers, Clocks and Drag-Free Control, pp. 153–180. Springer, Berlin (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Gambi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gambi, J.M., Tung, M.M., García del Pino, M.L., Clares, J. (2017). FDOA Determination of Velocities and Emission Frequencies of Passive Radiotransmitters in Space. In: Quintela, P., et al. Progress in Industrial Mathematics at ECMI 2016. ECMI 2016. Mathematics in Industry(), vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-63082-3_72

Download citation

Publish with us

Policies and ethics