Skip to main content

A Model for Nanoparticle Melting with a Newton Cooling Condition and Size-Dependent Latent Heat

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2016 (ECMI 2016)

Part of the book series: Mathematics in Industry ((TECMI,volume 26))

Included in the following conference series:

  • 1065 Accesses

Abstract

In this paper we study the melting of a spherical nanoparticle. To match with experimental data, the model includes several new features such as size-dependent latent heat and a cooling boundary condition at the boundary. Melt temperature variation and density change are also included. A novel form of Stefan condition is used to determine the position of the melt front. Results show that melting times can be significantly faster than those predicted by previous theoretical models, primarily due to the latent heat variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexiades, V., Solomon, A.D.: Mathematical Modeling of Melting and Freezing Processes. Hemisphere, Washington, DC (1992)

    Google Scholar 

  2. Bachels, T., Güntherodt, H.-J., Schäfer, R.: Melting of isolated tin nanoparticles. Phys. Rev. Lett. 85, 1250–1253 (2000)

    Article  Google Scholar 

  3. Back, J.M.: Stefan problems for melting nanoscaled particles. Ph.D. thesis, U. Queensland (2014). http://eprints.qut.edu.au/79905/1/Julian_Back_Thesis.pdf

  4. Buffat, P., Borel, J.-P.: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287–2298 (1976)

    Article  Google Scholar 

  5. Ercolessi, F., Andreoni, W., Tosatti, E.: Melting of small gold particles: mechanism and size effects. Phys. Rev. Lett. 66, 911–914 (1991)

    Article  Google Scholar 

  6. Font, F., Myers, T.G., Mitchell, S.L.: A mathematical model for nanoparticle melting with density change. Microfluid. Nanofluid. 18, 233–243 (2014)

    Article  Google Scholar 

  7. Jiang, H., Moon, K.-S., Dong, H., Hua, F., Wong, C.: Size-dependent melting properties of tin nanoparticles. Chem. Phys. Lett. 429, 492–496 (2006)

    Article  Google Scholar 

  8. Lai, S., Guo, J., Petrova, V., Ramanath, G., Allen, L.: Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77, 99–102 (1996)

    Article  Google Scholar 

  9. Myers, T.G.: Mathematical modelling of phase change at the nanoscale. Int. Commun. Heat Mass Transfer 76, 59–62 (2016)

    Article  Google Scholar 

  10. Ribera, H., Myers, T.G.: A mathematical model for nanoparticle melting with size-dependent latent heat and melt temperature. Microfluid. Nanofluid. 20(11), 147 (2016)

    Article  Google Scholar 

  11. Shin, J.-H., Deinert, M.R.: A model for the latent heat of melting in free standing metal nanoparticles. J. Chem. Phys. 140, 164707 (2014)

    Article  Google Scholar 

  12. Sun, J., Simon, S.: The melting behavior of aluminum nanoparticles. Thermochim. Acta 463, 32–40 (2007)

    Article  Google Scholar 

  13. Tolman, R.C.: The effect of droplet size on surface tension. J. Chem. Phys. 17, 333 (1949)

    Article  Google Scholar 

  14. Xiong, S., Qi, W., Cheng, Y., Huang, B., Wang, M., Li, Y.: Universal relation for size dependent thermodynamic properties of metallic nanoparticles. Phys. Chem. Chem. Phys. 13, 10652–10660 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge that the research leading to these results has received funding from “la Caixa” Foundation. TM acknowledges financial support from the Ministerio de Ciencia e Innovación grant MTM2014-56218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Ribera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ribera, H., Myers, T.G. (2017). A Model for Nanoparticle Melting with a Newton Cooling Condition and Size-Dependent Latent Heat. In: Quintela, P., et al. Progress in Industrial Mathematics at ECMI 2016. ECMI 2016. Mathematics in Industry(), vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-63082-3_47

Download citation

Publish with us

Policies and ethics