Skip to main content

On Some Extension of Energy-Drift-Diffusion Models: Gradient Structure for Optoelectronic Models of Semiconductors

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2016 (ECMI 2016)

Part of the book series: Mathematics in Industry ((TECMI,volume 26))

Included in the following conference series:

Abstract

We derive an optoelectronic model based on a gradient formulation for the relaxation of electron-, hole- and photon-densities to their equilibrium state. This leads to a coupled system of partial and ordinary differential equations, for which we discuss the isothermal and the non-isothermal scenario separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albinus, G., Gajewski, H., Hünlich, R.: Thermodynamic design of energy models of semiconductor devices. Nonlinearity 15(2), 367 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandelow, U., Gajewski, H., Hünlich, R.: Fabry-Perot Lasers: Thermodynamics-Based Modeling, pp. 63–85. Springer, New York (2005)

    Google Scholar 

  3. Chuang, S.: Physics of Optoelectronic Devices. Wiley Series in Pure and Applied Optics, vol. 22. Wiley, New York (1995)

    Google Scholar 

  4. Glitzky, A., Mielke, A.: A gradient structure for systems coupling reaction–diffusion effects in bulk and interfaces. Z. Angew. Math. Phys. 64(1), 29–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Landau, L., Lifshitz, E.: Statistical Physics, vol. 5: Course of Theoretical Physics. Pergamon Press, Oxford (1980)

    Google Scholar 

  7. Mielke, A.: A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329–1346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mielke, A.: On thermodynamical couplings of quantum mechanics and macroscopic systems. In: Mathematical Results in Quantum Mechanics: Proceedings of the QMath12 Conference, pp. 331–348. World Scientific (2015)

    Google Scholar 

  9. Mittnenzweig, M., Mielke, A.: An entropic gradient structure for Lindblad equations and GENERIC for quantum systems coupled to macroscopic models. arXiv preprint (2016). ArXiv:1609.05765

    Google Scholar 

  10. Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, Hoboken, NJ (2005)

    Book  Google Scholar 

  11. Otto, F.: Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Ration. Mech. Anal. 141(1), 63–103 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peschka, D., Thomas, M., Glitzky, A., Nürnberg, R., Gärtner, K., Virgilio, M., Guha, S., Schroeder, T., Capellini, G., Koprucki, T.: Modeling of edge-emitting lasers based on tensile strained germanium microstrips. IEEE Photonics J. 7(3), 1–15 (2015)

    Article  Google Scholar 

  14. Wachutka, G.K.: Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 9(11), 1141–1149 (1990)

    Article  Google Scholar 

  15. Würfel, P.: The chemical potential of radiation. J. Phys. C Solid State Phys. 15(18), 3967 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by DFG via project B4 in SFB 787 and by the Einstein Foundation Berlin via the Matheon project OT1 in ECMath. The authors are grateful to M. Liero, A. Glitzky and T. Koprucki for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Peschka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mielke, A., Peschka, D., Rotundo, N., Thomas, M. (2017). On Some Extension of Energy-Drift-Diffusion Models: Gradient Structure for Optoelectronic Models of Semiconductors. In: Quintela, P., et al. Progress in Industrial Mathematics at ECMI 2016. ECMI 2016. Mathematics in Industry(), vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-63082-3_45

Download citation

Publish with us

Policies and ethics