Skip to main content

Radiopharmaceuticals for Bone Metastases

  • Chapter
  • First Online:

Abstract

Bone-seeking radiopharmaceuticals play a significant role in the treatment of metastatic pain as an alternative, or in addition, to classic palliative treatment.

Until a few years ago, radionuclides for the management of prostate cancer consisted of several beta-emitting agents, such as strontium (89Sr), phosphorus (32P) and samarium (153Sm) as well as rhenium (186Re and 188Re), which only exhibit a palliative effect in patients with extensive skeletal disease.

Radium (223Ra) dichloride represents a new generation of radiopharmaceuticals, being the first targeted alpha-emitting agent approved, which improves overall survival, postpones skeletal-related events (SREs) and controls bone pain.

Conjugates of bisphosphonates (BP) with macrocyclic chelators open new possibilities in bone-targeted radionuclide imaging and therapy, when labelled with positron and beta-emitting radiometals. [68Ga/177Lu]DOTAZOL appears to be the best leading compound showing fast blood clearance, low uptake in soft tissue and high accumulation in the skeleton.

Prostate-specific membrane antigen (PSMA) is an attractive target for diagnosis and therapy of prostate cancer. 177Lu-PSMA-617 is a new treatment option, which is not solely directed to bone metastases, but also demonstrates “antitumour” activity with limited and well-tolerated side effects.

This is a preview of subscription content, log in via an institution.

References

  1. Liepe K, Shinto A. From palliative therapy to prolongation of survival: 223RaCl2 in the treatment of bone metastases. Ther Adv Med Oncol. 2016;8(4):294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maffioli L, Florimonte L, Costa DC, et al. New radiopharmaceutical agents for the treatment of castration-resistant prostate cancer. Q J Nucl Med Mol Imaging. 2015;59:420–38.

    CAS  PubMed  Google Scholar 

  3. Guerra Liberal FDC, Tavares AAS, Tavares JMRS. Palliative treatment of metastatic bone pain with radiopharmaceuticals: a perspective beyond Strontium-89 and Samarium-153. Appl Rad Isotope. 2016;110:87–99.

    Article  CAS  Google Scholar 

  4. Bienz M, Saad F. Management of bone metastases in prostate cancer: a review. Curr Opin Support Palliat Care. 2015;9:261–7.

    Article  PubMed  Google Scholar 

  5. Blacksburg SR, Witten MR, Haas JA. Integrating bone targeting radiopharmaceuticals into the management of patients with castrate-resistant prostate cancer with symptomatic bone metastases. Curr Treat Options in Oncol. 2015;16:11.

    Article  Google Scholar 

  6. Liepe K, Runge R, Kotzerke J. The benefit of bone-seeking radiopharmaceuticals in the treatment of metastatic bone pain. J Cancer Res Clin Oncol. 2005;131:60–6.

    Article  CAS  PubMed  Google Scholar 

  7. Bellmunt J. Tackling the bone with alpha emitters in metastatic castration-resistant prostate cancer patients. Eur Urol. 2013;63:198–200.

    Article  CAS  PubMed  Google Scholar 

  8. Goyal J, Antonarakis ES. Bone-targeting radiopharmaceuticals for the treatment of prostate cancer with bone metastases. Cancer Lett. 2012;323:135–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Das T, Banerjee S. Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons. Clin Exp Metastasis. 2016;34(1):1–10.

    Article  PubMed  Google Scholar 

  10. Srivastava SC, Mausner LF. Therapeutic radionuclides: production, physical characteristics, and applications. In: Baum RP, editor. Therapeutic nuclear medicine. Heidelberg: Springer; 2013.

    Google Scholar 

  11. Lewis B, Sartor O. Radiation-based approaches for therapy and palliation of advanced prostate cancer. Curr Opin Urol. 2012;22:183–9.

    Article  PubMed  Google Scholar 

  12. Knapp FF, Dash A. Radiopharmaceuticals for therapy. India: Springer; 2016.

    Google Scholar 

  13. Sartor O, Hoskin P, Bruland ØS. Targeted radio-nuclide therapy of skeletal metastases. Cancer Treat Rev. 2013;39:18–26.

    Article  CAS  PubMed  Google Scholar 

  14. Das T, Pillai MRA. Options to meet the future global demand of radionuclides for radionuclide therapy. Nucl Med Biol. 2013;40:23–32.

    Article  CAS  PubMed  Google Scholar 

  15. Riondato M, Eckelman WC. In: Ciarmiello A, Mansi L, editors. Radiopharmaceuticals. PET-CT and PET-MRI in neurology. SWOT analysis applied to hybrid imaging, vol. 4. Part I ed. Switzerland: Springer; 2016. p. 31–58.

    Google Scholar 

  16. Silberstein EB. Teletherapy and radiopharmaceutical therapy of painful bone metastases. Semin Nucl Med. 2005;35:152–8.

    Article  PubMed  Google Scholar 

  17. van Dodewaard-de JM, Oprea-Lager DE, Hooft L, et al. Radiopharmaceuticals for palliation of bone pain in patients with castration- resistant prostate cancer metastatic to bone: a systematic review. Eur Urol. 2016;70:416–26.

    Article  Google Scholar 

  18. Rubini G, Nicoletti A, Rubini D, Niccoli A. Radiometabolic treatment of bone-metastasizing cancer: from 186Renium to 223Radium. Cancer Biother Radiopharm. 2013;29(1):1–11.

    Article  PubMed  Google Scholar 

  19. Finlay IG, Mason MD, Shelley M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol. 2005;6(6):392–400.

    Article  CAS  PubMed  Google Scholar 

  20. Lewington VJ. Bone-seeking radionuclides for therapy. J Nucl Med. 2005;46:38S–47S.

    CAS  PubMed  Google Scholar 

  21. Bergmann R, Meckel M, Kubíček V, et al. 177Lu-labelled macrocyclic bisphosphonates for targeting bone metastasis in cancer treatment. EJNMMI Res. 2016;6:5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meckel M, Bergmann R, Miederer M, Roesch F. Bone targeting compounds for radiotherapy and imaging: *me(III)-DOTA conjugates of bisphosphonic acid, pamidronic acid and zoledronic acid. EJNMMI Radiopharmacy Chem. 2016;1:14.

    Article  Google Scholar 

  23. Rachner TD, Jakob F, Hofbauer LC. Cancer-targeted therapies and radiopharmaceuticals. Bonekey Reports. 2015;4:707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hofbauer LC, Rachner TD, Coleman RE, Jakob F. Endocrine aspects of bone metastases. Lancet Diabetes Endocrinol. 2014;2(6):500–12.

    Article  CAS  PubMed  Google Scholar 

  25. Mantyh PW. Bone cancer pain: from mechanism to therapy. Curr Opin Support Palliat Care. 2014;8(2):83–90.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Abi-Ghanem AS, McGrath MA, Jacene HA. Radionuclide therapy for osseous metastases in prostate. Cancer Semin Nucl Med. 2015;45:66–80.

    Article  PubMed  Google Scholar 

  27. Baidoo KE, Yong K, Brechbiel M. Molecular pathways: targeted alpha-particle radiation therapy. Clin Cancer Res. 2013;19(3):530–7.

    Article  CAS  PubMed  Google Scholar 

  28. Florimonte L, Dellavedova L, Maffioli LS. Radium-223 dichloride in clinical practice: a review. Eur J Nucl Med Mol Imaging. 2016;43(10):1896–909.

    Article  CAS  PubMed  Google Scholar 

  29. Sartor O. Radiopharmaceuticals: a path forward. Eur Urol. 2016;70:427–8.

    Article  PubMed  Google Scholar 

  30. Emmett L, Kathy Willowson K, et al. Lutetium-177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. 2017;64(1):52–60.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Afshar-Oromieh A, Hetzheim H, Kratochwil C, et al. The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med. 2015;56:1697–705.

    Article  CAS  PubMed  Google Scholar 

  32. Clinical guideline [CG175]. 2014. http://www.nice.org.uk/guidance/cg175

  33. Italian Medicines Agency, European Public Assessment Report (EPAR) Strontium [89Sr] dichloride (last updated 10 June 2016. http://www.aifa.gov.it/en.

  34. Delacroix D, Guerre JP, Leblanc P, Hickman C. Radionuclide and radiation protection data handbook. Radiat Prot Dosim. 2002;98:1.

    Article  Google Scholar 

  35. Lam MGEH, de Klerk JMH, van Rijk PP, Zonnenberg BA. Bone seeking radiopharmaceuticals for palliation of pain in cancer patients with osseous metastases. Anti Cancer Agents Med Chem. 2007;7:381–97.

    Article  CAS  Google Scholar 

  36. Ogawa K, Washiyama K. Bone target radiotracers for palliative therapy of bone metastases. Curr Med Chem. 2012;19:3290–300.

    Article  CAS  PubMed  Google Scholar 

  37. Pandit-Taskar N, Batraki M, Divgi CR. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med. 2004;45:1358–65.

    CAS  PubMed  Google Scholar 

  38. Paes FM, Ernani V, Hosein P, Serafi ni AN. Radiopharmaceuticals: when and how to use them to treat metastatic bone pain. J Support Oncol. 2011;9:197–205.

    Article  CAS  PubMed  Google Scholar 

  39. Morris MJ, Scher HI. Clinical approaches to osseous metastases in prostate cancer. Oncologist. 2003;8(2):161–73.

    Article  PubMed  Google Scholar 

  40. Gravalos C, Rodriguez C, Sabino A, et al. SEOM clinical guideline for bone metastases from solid tumours (2016). Clin Transl Oncol. 2016;18:1243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nilsson S. Radionuclide therapies in prostate cancer: integrating radium-223 in the treatment of patients with metastatic castration-resistant prostate. Cancer Curr Oncol Rep. 2016;18:14.

    Article  PubMed  Google Scholar 

  42. Tucci M, Scagliotti GV, Vignani F. Metastatic castration-resistant prostate cancer: time for innovation. Future Oncol. 2015;11(1):91–106.

    Article  CAS  PubMed  Google Scholar 

  43. Harrison MR, Wong TZ, Armstrong AJ, George DJ. Radium-223 chloride: a potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease. Cancer Manag Res. 2013;5:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. El-Amm J, Aragon-Ching JB. Radium-223 for the treatment of castration-resistant prostate cancer. Oncol Targets Therap. 2015;8:1103–9.

    Article  CAS  Google Scholar 

  45. Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, part 1: a therapy with 223Ra-dichloride. J Nucl Med. 2014;55:268–74.

    Article  CAS  PubMed  Google Scholar 

  46. Jadvar H, Quinn DI. Targeted alpha-particle therapy of bone metastases in prostate cancer. Clin Nucl Med. 2013;38:966–71.

    PubMed  Google Scholar 

  47. European Medicines Agency (EMA) European Public Assessment Report (EPAR) radium [223Ra] dichloride (last updated 2016). http://www.ema.europa.eu/ema/.

  48. Lien LME, Tvedt B, Heinrich D. Treatment of castration-resistant prostate cancer and bone metastases with radium-223 dichloride. Int J Urol Nurs. 2015;9:3–13.

    Article  PubMed  Google Scholar 

  49. Buroni FE, Persico MG, Pasi F, et al. Review radium-223: insight and perspectives in bone-metastatic castration-resistant prostate cancer. Anticancer Res. 2016;36:5719–30.

    Article  CAS  PubMed  Google Scholar 

  50. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  51. Ryan CJ, Saylor PJ, Everly JJ, Sartor O. Bone-targeting radiopharmaceuticals for the treatment of bone-metastatic castration-resistant prostate cancer: exploring the implications of new data. Oncologist. 2014;19(10):1012–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nilsson S. Radium-223 dichloride for the treatment of bone metastatic castration-resistant prostate cancer: an evaluation of its safety. Expert Opin Drug Saf. 2015;14(7):1127–36.

    Article  CAS  PubMed  Google Scholar 

  53. Sartor O, Coleman R, Nilsson S, et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol. 2014;15:738–46.

    Article  CAS  PubMed  Google Scholar 

  54. Shore ND. Radium-223 dichloride for metastatic castration-resistant prostate cancer: the urologist’s perspective. Urology. 2015;85(4):717–24.

    Article  PubMed  Google Scholar 

  55. Cheetham PJ, Petrylak DP. Alpha particles as radiopharmaceuticals in the treatment of bone metastases: mechanism of action of radium-223 chloride (Alpharadin) and radiation. Oncology (Williston Park). 2012;26(4):330–41.

    Google Scholar 

  56. Coleman R. Treatment of metastatic bone disease and the emerging role of radium-223. Semin Nucl Med. 2016;46:99–104.

    Article  PubMed  Google Scholar 

  57. Shirley M, McCormack PL. Radium-223 dichloride: a review of its use in patients with castration resistant prostate cancer with symptomatic bone metastases. Drugs. 2014;74:579–86.

    Article  CAS  PubMed  Google Scholar 

  58. Wieder HA, Lassmann M, Allen-Auerbach MS, et al. Clinical use of bone-targeting radiopharmaceuticals with focus on alpha-emitters. World J Radiol. 2014;6(7):480–5.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bombardieri E, Evangelista L, Ceresoli GL, Boccardo F. Nuclear medicine and the revolution in the modern management of castration-resistant prostate cancer patients: from 223Ra-dichloride to new horizons for therapeutic response assessment. Eur J Nucl Med Mol Imaging. 2016;43:5–7.

    Article  PubMed  Google Scholar 

  60. El-Amm J, Freeman A, Patel N, Aragon-Ching JB. Bone-targeted therapies in metastatic castration-resistant prostate cancer: evolving paradigms. Prostate Cancer. 2013;2013:210686.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Iagaru AH, Mittra E, Colletti PM, Jadvar H. Bone-targeted imaging and radionuclide therapy in prostate cancer. J Nucl Med. 2016;57:19S–24S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baldari S, Boni G, Bortolus R, et al. Management of metastatic castration-resistant prostate cancer: a focus on radium-223 opinions and suggestions from an expert multidisciplinary panel. Crit Rev. Oncol Hematol. 2017;113:43–51.

    Article  PubMed  Google Scholar 

  63. European Pharmacopoeia 5.0 “Sodium phosphate (32P) injection” (Ph Eur monograph 0284) (01/2005).

    Google Scholar 

  64. USP monographs: Sodium phosphate P 32 solution. 2005. USP29-NF2:1727.

    Google Scholar 

  65. Vimalnath KV, Shetty P, Chakraborty S, et al. Practicality of production of 32P by direct neutron activation for its utilization in bone pain palliation as Na3[32P]PO4. Cancer Biother Radiopharm. 2013;28:423–8.

    Article  CAS  PubMed  Google Scholar 

  66. Sartor O, Reid RH, Hoskin PJ, et al. Samarium-153-lexidronam complex for treatment of painful bone metastases in hormone refractory prostate cancer. Urology. 2004;63:940–5.

    Article  PubMed  Google Scholar 

  67. European Medicines Agency (EMA) European Public Assessment Report (EPAR) Samarium [153Sm] lexidronam (last updated 2015). http://www.ema.europa.eu/ema.

  68. Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med. 2010;40:89–104.

    Article  PubMed  Google Scholar 

  69. Anderson P. Samarium for osteoblastic bone metastases and osteosarcoma. Expert Opin Pharmacother. 2006;7:1475–86.

    Article  CAS  PubMed  Google Scholar 

  70. Pillai MRA, Dash A, Knapp FF Jr. Rhenium-188: availability from the 188W/188Re generator and status of current applications. Curr Radiopharm. 2012;5:228–43.

    Article  CAS  PubMed  Google Scholar 

  71. Bodei L, Lam M, Chiesa C, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging EANM. 2008;35(10):1934–40.

    Article  Google Scholar 

  72. Minutoli F, Herberg A, Spadaro P. [186Re]-HEDP in the palliation of painful bone metastases from cancers other than prostate and breast. Q J Nucl Med Mol Imaging. 2006;50:355–62.

    CAS  PubMed  Google Scholar 

  73. Knapp FF Jr, Beets AL, Pinkert J, et al. Rhenium radioisotopes for therapeutic radiopharmaceutical development. Inter seminar on therapeutic applications of radiopharmaceuticals (IAEA-SR-209), Hyderabad, India. 1999.

    Google Scholar 

  74. Boschi A, Uccelli L, Pasquali M, et al. 188 W/188Re generator system and its therapeutic applications. J Chemom. 2014;2014:529406.

    Google Scholar 

  75. Argyrou M, Valassi A, Andreou M, Lyra M. Rhenium-188 production in hospitals, by W-188/re-188 generator, for easy use in radionuclide therapy. Int J Mol Imaging. 2013;2013:290750.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Liepe K, Kropp J, RungeR KJ. Therapeutic efficiency of rhenium-188-HEDP in human prostate cancer skeletal metastases. Br J Cancer. 2003;89:625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yousefnia H, Zolghadri S, Sadeghi HR. Preparation and biological assessment of 177Lu-BPAMD as a high potential agent for bone pain palliation therapy: comparison with 177Lu-EDTMP. J Radioanal Nucl Chem. 2015;307:1243–51.

    Article  Google Scholar 

  78. Meckel M. Macrocyclic bisphosphonates for PET-diagnosis and endoradiotherapy of bone metastases [Dissertation]; 2014.

    Google Scholar 

  79. Banerjee S, Pillai MRA, Knapp FF Jr. Lutetium-177 therapeutic radiopharmaceuticals-linking chemistry, radiochemistry and practical applications. Chem Rev. 2015;115:2934–74.

    Article  CAS  PubMed  Google Scholar 

  80. Dash A, Pillai MRA, Knapp FF. Production of 177Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging. 2015;49:85–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. European Medicines Agency (EMA) European Public Assessment Report (EPAR) Lutetium (177Lu) chloride (last updated 2017). http://www.ema.europa.eu/ema.

  82. Meckel M, Kubíček V, Hermann P, et al. A DOTA based bisphosphonate with an albumin binding moiety for delayed body clearance for bone targeting. Nucl Med Biol. 2016;43:670–8.

    Article  CAS  PubMed  Google Scholar 

  83. Rasheed R, Lodhi NA, Khalid M, et al. Radio-synthesis, and in-vivo skeletal localization of 177Lu- zoledronic acid as novel bone seeking therapeutic radiopharmaceutical. J Anesth Clin Res. 2015;6:516.

    Article  Google Scholar 

  84. European Medicines Agency (EMA) European Public Assessment Report (EPAR) Zoledronic acid (last updated 2016). http://www.ema.europa.eu/ema.

  85. Kiess AP, Banerjee SR, Mease RC, et al. Prostate-specific membrane antigen as a target for cancer imaging and therapy. Q J Nucl Med Mol Imaging. 2015;59:241–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Baum RP, Kulkarni HR, Schuchardt C, et al. 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med. 2016;57:1006–13.

    Article  CAS  PubMed  Google Scholar 

  87. Pillai MRA, Nanabala R, Joy A, et al. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: effective theranostic tools for imaging and therapy of prostate cancer. Nucl Med Biol. 2016;43:692–720.

    Article  CAS  PubMed  Google Scholar 

  88. Wüstemann T, Bauder-Wüst U, Schäfer M, et al. Design of internalizing PSMA-specific Glu-ureido-based radiotherapeuticals. Theranostics. 2016;6(8):1085–95.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nanabala R, Sasikumar A, Joy A, Pillai MRA. Preparation of [177Lu]PSMA-617 using carrier added (CA) 177Lu for radionuclide therapy of prostate cancer. J Nucl Med Radiat Ther. 2016;7:306.

    Article  Google Scholar 

  90. Tagawa ST, Milowsky MI, Morris M, et al. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate. Cancer Clin Cancer Res. 2013;19(18):5182–91.

    Article  CAS  PubMed  Google Scholar 

  91. Rahbar K, Ahmadzadehfar H, Kratochwil C. German multicenter study investigating 177Lu-PSMA-617 radiology and therapy in advanced prostate cancer patients. J Nucl Med. 2017;58:85–90.

    Article  CAS  PubMed  Google Scholar 

  92. Rahbar K, Bode A, Weckesser M, et al. Radioligand therapy with 177Lu-PSMA-617 as a novel therapeutic option in patients with metastatic castration resistant prostate. Cancer Clin Nucl Med. 2016;41:522–8.

    Article  PubMed  Google Scholar 

  93. Kratochwil C, Giesel FL, Stefanova M. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57:1170–6.

    Article  CAS  PubMed  Google Scholar 

  94. Afshar-Oromieh A, Babich JW, Kratochwil C. The rise of PSMA ligands for diagnosis and therapy of prostate cancer. Nucl Med. 2016;57:79S–89S.

    Article  CAS  Google Scholar 

  95. Heck MM, Retz M, D’Alessandria C, et al. Systemic radioligand therapy with 177Lu-PSMA-I&T in patients with metastatic castration-resistant prostate cancer. J Urol. 2016;196(2):382–91.

    Article  CAS  PubMed  Google Scholar 

  96. Weineisen M, Schottelius M, Simecek J, et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med. 2015;56:1169–76.

    Article  CAS  PubMed  Google Scholar 

  97. Chatalic KLS, Heskamp S, Konijnenberg M, et al. Towards personalized treatment of prostate cancer: PSMA I&T, a promising prostate-specific membrane antigen-targeted theranostic agent. Theranostics. 2016;6(6):849–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barrio M, Fendler WP, Czernin J, Herrmann K. Prostate specific membrane antigen (PSMA) ligands for diagnosis and therapy of prostate cancer. Expert Rev. Mol Diagn. 2016;16(11):1177–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Pagano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pagano, B., Baldari, S. (2018). Radiopharmaceuticals for Bone Metastases. In: Bombardieri, E., Seregni, E., Evangelista, L., Chiesa, C., Chiti, A. (eds) Clinical Applications of Nuclear Medicine Targeted Therapy . Springer, Cham. https://doi.org/10.1007/978-3-319-63067-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63067-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63066-3

  • Online ISBN: 978-3-319-63067-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics