Skip to main content

HCC Radioembolization with Yttrium-90 Polymer Beads (SIR-Spheres)

  • Chapter
  • First Online:
Clinical Applications of Nuclear Medicine Targeted Therapy

Abstract

Introduction: Transarterial radioembolization (TARE) is a form of brachytherapy in which microspheres loaded with the radioactive isotope yttrium-90 (90Y) are injected selectively to the tumor-feeding arteries through a catheter using fluoroscopic guidance. The use of 90Y microspheres leads to tumor necrosis by delivering a high radiation dose (>70 Gy, tumoricidal threshold) directly to HCC nodules, sparing the non-tumoral liver, and with little or no embolic effect on the vessels. Resin 90Y microspheres are 20–60 μm in size, carry approximately 50 Bq/sphere, and contain 40–80 million microspheres per 3 GBq (1 vial).

Indications: TARE is a suitable first-line therapy for intermediate-stage patients with locally advanced disease and those who are poor candidates for transarterial chemoembolization (TACE). Surgery and thermal ablation are precluded due to lesion size or amount. TARE is a valid treatment option also for patients with HCC and portal vein tumor thrombosis (PVTT), which is commonly recognized as a relative contraindication to other transarterial therapies.

Selection Criteria: To be considered for TARE, patients with HCC should have liver-only or liver-dominant disease, a life expectancy >12 weeks, and ECOG performance status <2 or Karnofsky performance index ≥60%. Preserved liver function is essential. Kidney function and blood coagulation are other important parameters to assess.

Administration: The majority of TAREs are performed by calculating the injected activity based on empiric formulas suggested by the manufac turers instead of following a scrupulous dosimetric algorithm. Three methods of activity estimation are suggested in the manufacturer’s user manual for resin microspheres: body surface area (BSA), empiric, and partition.

Pre-TARE Imaging: HCC can be evaluated through different techniques: US, contrast-enhanced CT, and contrast-enhanced MRI (gold standard for HCC nodules).

Treatment Procedure: All patients scheduled for TARE have to undergo initial hepatic and gastrointestinal angiography to evaluate the amount of resin microspheres that could inadvertently pass from the artery site of injection to the systemic blood circulation. During angiography, contrast media is administered intra-arterially followed by administration of 150 MBq of 99mtechnetium-labeled macroaggregated albumin (99Tc; eluted in 5 mL of saline; 99Tc-MAA) at the same site. The 99Tc-MAA microparticles act as good surrogate for 90Y resin microspheres due to the similarities in average diameter and density. One hour after administration of 99Tc, a SPECT is performed in order to assess the percentage of radioactive spheres shunted to the systemic circulation, particularly to the lungs and extrahepatic abdominal organs. Patients may undergo TARE only if <20% of 99TC albumin macroaggregates are shunted to the lungs and if the 90Y dose does not exceed 30 Gy in single administration or 50 Gy in cumulative doses for all planned infusions. TARE is then performed retracing the tumor-feeding arteries and administering the 90Y resin microspheres.

Follow-up: Follow-up comprises a complete liver function test, a complete blood count, tumor marker analysis, and contrast-enhanced CT 40 or 60 days after TARE.

Post-procedural Assessments: Radionecrosis is demonstrated by a hypointense area with absence of contrast enhancement on CT. Response is classified according to modified Response Evaluation Criteria in Solid Tumors (mRECIST).

Adverse Events: The most common adverse event experienced by patients following TARE is postembolization syndrome (PES), which encompasses symptoms of nausea, vomiting, fatigue, fever, and mild abdominal pain, especially in the right hypochondrium. Rare but serious complications of TARE have been reported and include gastrointestinal ulceration/bleeding, cholecystitis, pancreatitis, and radiation pneumonitis.

Conclusions: To summarize, TARE is a well-tolerated procedure that shows comparable or better outcomes and toxicities to those reported for other intra-arterial therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dawson LA, et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J Clin Oncol. 2000;18:2210–8.

    Article  CAS  PubMed  Google Scholar 

  2. Lawrence TS, et al. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31:1237–48.

    Article  CAS  PubMed  Google Scholar 

  3. Klein J, Dawson LA. Hepatocellular carcinoma radiation therapy: review of evidence and future opportunities. Int J Radiat Oncol Biol Phys. 2013;87:22–32.

    Article  PubMed  Google Scholar 

  4. Cappelli A, Pettinato C, Golfieri R. Transarterial radioembolization using yttrium-90 microspheres in the treatment of hepatocellular carcinoma: a review on clinical utility and developments. J Hepatocell Carcinoma. 2014;1:163–82.

    PubMed  PubMed Central  Google Scholar 

  5. Bilbao JI, et al. Biocompatibility, inflammatory response, and recannalization characteristics of nonradioactive resin microspheres: histological findings. Cardiovasc Intervent Radiol. 2009;32:727–36.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sato K, et al. Treatment of unresectable primary and metastatic liver cancer with yttrium-90 microspheres (TheraSphere): assessment of hepatic arterial embolization. Cardiovasc Intervent Radiol. 2006;29:522–9.

    Article  PubMed  Google Scholar 

  7. Lau W-Y, et al. Treatment for hepatocellular carcinoma with portal vein tumor thrombosis: the emerging role for radioembolization using yttrium-90. Oncology. 2013;84:311–8.

    Article  CAS  PubMed  Google Scholar 

  8. Parikh ND, Waljee AK, Singal AG. Downstaging hepatocellular carcinoma: a systematic review and pooled analysis. Liver Transpl. 2015;21:1142–52.

    Article  PubMed  Google Scholar 

  9. Murthy R, Kamat P, Nuñez R, Salem R. Radioembolization of yttrium-90 microspheres for hepatic malignancy. Semin Interv Radiol. 2008;25:48–57.

    Article  Google Scholar 

  10. Kennedy A, et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys. 2007;68:13–23.

    Article  PubMed  Google Scholar 

  11. Hoffmann R-T, Jakobs TF, Reiser MF. In: Bilbao JI, Reiser MF, editors. Liver radioembolization with 90Y microspheres. Heidelberg: Springer; 2008. p. 11–4. https://doi.org/10.1007/978-3-540-35423-9_2.

    Chapter  Google Scholar 

  12. Bilbao JI, Reiser MF, editors. Medical radiology. Heidelberg: Springer; 2014. https://doi.org/10.1007/978-3-642-36473-0.

    Google Scholar 

  13. Kennedy AS, et al. Dose selection of resin 90Y-microspheres for liver brachytherapy: a single center review. Brachytherapy. 2006;5:103–4.

    Google Scholar 

  14. Ho S, et al. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med. 1997;24:293–8.

    CAS  PubMed  Google Scholar 

  15. Badea R, Ioanitescu S. In: Julianov A, editor. Liver tumors. Rijeka: InTech; 2012. https://doi.org/10.5772/31137.

    Google Scholar 

  16. Choi BI, et al. Small hepatocellular carcinoma: detection with sonography, computed tomography (CT), angiography and Lipiodol-CT. Br J Radiol. 1989;62:897–903.

    Article  CAS  PubMed  Google Scholar 

  17. Hosoki T, et al. Visualization of tumor vessels in hepatocellular carcinoma. Power Doppler compared with color Doppler and angiography. Acta Radiol. 1997;38:422–7.

    CAS  PubMed  Google Scholar 

  18. Semelka RC, Martin DR, Balci C, Lance T. Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging. 2001;13:397–401.

    Article  CAS  PubMed  Google Scholar 

  19. Cartier V, Aubé C. Diagnosis of hepatocellular carcinoma. Diagn Interv Imaging. 2014;95:709–19.

    Article  CAS  PubMed  Google Scholar 

  20. Kim BS, Lee KR, Goh MJ. New imaging strategies using a motion-resistant liver sequence in uncooperative patients. Biomed Res Int. 2014;2014:142658.

    PubMed  PubMed Central  Google Scholar 

  21. Hennedige T, Venkatesh SK. Imaging of hepatocellular carcinoma: diagnosis, staging and treatment monitoring. Cancer Imaging. 2013;12:530–47.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim SH, Lee WJ, Lim HK, Park CK. SPIO-enhanced MRI findings of well-differentiated hepatocellular carcinomas: correlation with MDCT findings. Korean J Radiol. 2009;10:112–20.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Albiin N. MRI of focal liver lesions. Curr Med Imaging Rev. 2012;8:107–16.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ho S, et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med. 1996;23:947–52.

    Article  CAS  PubMed  Google Scholar 

  25. Gulec SA, Mesoloras G, Dezarn WA, McNeillie P, Kennedy AS. Safety and efficacy of Y-90 microsphere treatment in patients with primary and metastatic liver cancer: the tumor selectivity of the treatment as a function of tumor to liver flow ratio. J Transl Med. 2007;5:15.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lau WY, et al. Diagnostic pharmaco-scintigraphy with hepatic intra-arterial technetium-99m macroaggregated albumin in the determination of tumour to non-tumour uptake ratio in hepatocellular carcinoma. Br J Radiol. 1994;67:136–9.

    Article  CAS  PubMed  Google Scholar 

  27. Cremonesi M, et al. Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging. 2008;35:2088–96.

    Article  CAS  PubMed  Google Scholar 

  28. Campbell JM, et al. Early dose response to yttrium-90 microsphere treatment of metastatic liver cancer by a patient-specific method using single photon emission computed tomography and positron emission tomography. Int J Radiat Oncol Biol Phys. 2009;74:313–20.

    Article  CAS  PubMed  Google Scholar 

  29. Kao YH, et al. Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med. 2012;53:559–66.

    Article  CAS  PubMed  Google Scholar 

  30. Kao Y-H, et al. Post-radioembolization yttrium-90 PET/CT – part 2: dose-response and tumor predictive dosimetry for resin microspheres. EJNMMI Res. 2013;3:57.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Covey AM, Brody LA, Maluccio MA, Getrajdman GI, Brown KT. Variant hepatic arterial anatomy revisited: digital subtraction angiography performed in 600 patients. Radiology. 2002;224:542–7.

    Article  PubMed  Google Scholar 

  32. Mosconi C, Cappelli A, Pettinato C, Golfieri R. Radioembolization with Yttrium-90 microspheres in hepatocellular carcinoma: role and perspectives. World J Hepatol. 2015;7:738–52.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schelhorn J, et al. Does diffusion-weighted imaging improve therapy response evaluation in patients with hepatocellular carcinoma after radioembolization? Comparison of MRI using Gd-EOB-DTPA with and without DWI. J Magn Reson Imaging. 2015;42:818–27.

    Article  PubMed  Google Scholar 

  34. Hartenbach M, et al. Evaluating treatment response of radioembolization in intermediate-stage hepatocellular carcinoma patients using 18F-fluoroethylcholine PET/CT. J Nucl Med. 2015;56:1661–6.

    Article  CAS  PubMed  Google Scholar 

  35. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60.

    Article  CAS  PubMed  Google Scholar 

  36. Seyal AR, et al. Reproducibility of mRECIST in assessing response to transarterial radioembolization therapy in hepatocellular carcinoma. Hepatology. 2015;62:1111–21.

    Article  CAS  PubMed  Google Scholar 

  37. Bhangoo MS, et al. Radioembolization with Yttrium-90 microspheres for patients with unresectable hepatocellular carcinoma. J Gastrointest Oncol. 2015;6:469–78.

    PubMed  PubMed Central  Google Scholar 

  38. Vente MAD, et al. Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: a structured meta-analysis. Eur Radiol. 2009;19:951–9.

    Article  CAS  PubMed  Google Scholar 

  39. Salem R, et al. Technical aspects of radioembolization with 90Y microspheres. Tech Vasc Interv Radiol. 2007;10:12–29.

    Article  PubMed  Google Scholar 

  40. Kooby DA, et al. Comparison of yttrium-90 radioembolization and transcatheter arterial chemoembolization for the treatment of unresectable hepatocellular carcinoma. J Vasc Interv Radiol. 2010;21:224–30.

    Article  PubMed  Google Scholar 

  41. Carr BI, Kondragunta V, Buch SC, Branch RA. Therapeutic equivalence in survival for hepatic arterial chemoembolization and yttrium 90 microsphere treatments in unresectable hepatocellular carcinoma: a two-cohort study. Cancer. 2010;116:1305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Rodari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodari, M., Muglia, R. (2018). HCC Radioembolization with Yttrium-90 Polymer Beads (SIR-Spheres). In: Bombardieri, E., Seregni, E., Evangelista, L., Chiesa, C., Chiti, A. (eds) Clinical Applications of Nuclear Medicine Targeted Therapy . Springer, Cham. https://doi.org/10.1007/978-3-319-63067-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63067-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63066-3

  • Online ISBN: 978-3-319-63067-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics