Medical Devices for Radioembolization

  • Anna Bogni
  • Claudio Pascali


Microspheres of the proper size injected into the hepatic artery lodge themselves preferentially in and around tumours as a result of both the increased vascularity of tumours and the fact that blood from the hepatic artery flows preferentially to malignancies. Thus, radioembolization with microspheres labelled with β-emitter radionuclides has become a well-established and powerful tool for the treatment of liver malignancies, since it adds to the embolization effect the deposition of lethal doses of radiation to the tumour cells.

Two commercially available medical devices of this type labelled with yttrium-90 (90Y) are presently authorized for human use. Although both are reportedly effective, they have key dissimilarities strictly related to their chemical form and manufacturing method. The aim of this chapter is to examine these factors in terms of pro and cons and how they can affect the use and biodistribution of radiolabelled microspheres.

Last, the need to have good in vivo imaging during pretreatment procedure, as well as during and/or after administration of the dose, has encouraged to explore alternative radionuclides to 90Y able to fulfil this requirement, such as holmium-166 (166Ho) and rhenium-186 and rhenium-188 (186Re/188Re). These, together with the development of different microsphere matrixes, will be also discussed.


Yttrium-90 Holmium-166 Rhenium-186/Rhenium-188 Radiolabelled microspheres Radioembolization 


  1. 1.
    Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol. 1954;30(5):969–85.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Van de Wiele C, Maes A, Brugman E, D’asseler Y, De Spiegeleer B, Mees G, Stellamans K. SIRT of liver metastases: physiological and pathophysiological considerations. Eur J Nucl Med Mol Imaging. 2012;39:1646–55.Google Scholar
  3. 3.
    Laurent A. Microspheres and nonspherical particles for embolization. Tech Vasc Interv Rad. 2007;10:248–56.CrossRefGoogle Scholar
  4. 4.
    Nijsen JFW, Zonnenberg BA, Woittiez JRW, Rook DW, Swildens-van Woudenberg IA, van Rijk PP, van het Schip AD. Holmium-166 poly lactic microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques. Eur J Nucl Med. 1999;26:699–704.CrossRefPubMedGoogle Scholar
  5. 5.
    Cremonesi M, Ferrari M, Bartolomei M, Orsi F, Bonomo G, Aricò D, et al. Radioembolization with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging. 2008;35(11):2088–96.CrossRefPubMedGoogle Scholar
  6. 6.
    Wunderlich G, Schiller E, Bergmann R, Pietzsch HJ. Comparison of the stability of Y-90-, Lu-177- and Ga-68- labeled human serum albumin microspheres (DOTA-HSAM). Nucl Med Biol. 2010;37:861–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Burton MA, Gray BN, Klemp PF, Kelleher DK, Hardy N. Selective internal radiation therapy: distribution of radiation in the liver. Eur J Cancer Clin Oncol. 1989;25(10):1487–91.CrossRefPubMedGoogle Scholar
  8. 8.
    Lau WY, Ho S, Leung TWT, Chan M, Ho R, Johnson PJ, Li AKC. Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90Yttrium microspheres. Int Radiat Oncol Biol Phys. 1998;40(3):583–92.CrossRefGoogle Scholar
  9. 9.
    Van de Maat GH, Seevinck PR, Elschot M, Smits MLJ, de Leeuw H, van het Schip AD, et al. MRI-based biodistribution assessment of holmium-166 poly (L-lactic acid) microspheres after radioembolization. Eur Radiol. 2013;23:827–35.Google Scholar
  10. 10.
    Aspasio RD, Borges R, Marchi J. Biocompatible glasses for cancer treatment. In: Marchi J, editor. Biocompatible glasses: from bone regeneration to cancer treatment. Cham: Springer; 2016. p. 267–84.Google Scholar
  11. 11.
    Erbe EM, Day DE. Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation. J Biomed Mater Res. 1993;27(10):1301–8.Google Scholar
  12. 12.
    Metyko J, Williford JM, Erwin W, Poston J, Jimenez S. Long-lived impurities of 90Y-labeled microspheres, Thera Sphere and SIR-Spheres, and the impact on patients dose and waste management. Radiat Saf J. 2012;103(2):S204–8.Google Scholar
  13. 13.
    Day DE, Ehrhardt GJ. Glass microspheres. United States Patent number 4789501. 1988.Google Scholar
  14. 14.
    Morgan B, Kennedy AS, Lewington V, Jones B, Sharma RA. Intra-arterial brachytherapy of hepatic malignancies: watch the flow. Nat Rev Clin Oncol. 2011;8:115–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Basciano CA, Kleinstreuer C, Kennedy AS. Computational fluid dynamics modeling of 90Y microspheres in human hepatic tumors. J Nucl Med Radiat Ther. 2011.
  16. 16.
    Wagner HN, Rhodes BA, Sasaki Y, Ryan JP. Studies of the circulation with radioactive microspheres. Investig Radiol. 1969;4(6):374–86.CrossRefGoogle Scholar
  17. 17.
    Caine M, McCafferty MS, McGhee S, Garcia P, Mullett WN, Zhang X, et al. Impact of Yttrium-90 microspheres density, flow dynamics, and administration technique on spatial distribution: analysis using an in vitro model. J Vasc Interv Radiol. 2017;28:260–8.Google Scholar
  18. 18.
    Ibrahim S, Lewandowski RJ, Ryu RK, Sato KT, Gates VL, Mulcahy MF, et al. Radiographic response to yttrium-90 radioembolization in anterior versus posterior liver segments. Cardiovasc Intervent Radiol. 2008;31:1124–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Salem R, Mazzaferro V, Sangro B. Yttrium-90 radioembolization for the treatment of hepatocellular carcinoma: biological lesson, current challenges, and clinical perspectives. Hepatology. 2013;58(6):2188–97.Google Scholar
  20. 20.
    Gray BN. Polymer based radionuclide containing particulate material. Patent application WO 02/34300 A1. 2002.Google Scholar
  21. 21.
    Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, et al. EANM procedure guidelines for the treatment of liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38(7):1393–406.CrossRefPubMedGoogle Scholar
  22. 22.
    Lambert B, Mertens J, Ravier M, Blanken T, Defreyne L, Van Vlierberghr H, et al. Urinary excretion of Yttrium-90 following intra-arterial microspheres treatment for liver tumours. J Nucl Med. 2011;52(Supplement 1):1744.Google Scholar
  23. 23.
    Nelson K, Vause PE, Koropova P. Post-mortem considerations of yttrium-90 (90Y) microspheres therapy procedures. Health Phys. 2008;95(5):S156–61.CrossRefPubMedGoogle Scholar
  24. 24.
    Kennedy AS, McNeille P, Dezarn WA, Nutting C, Sangro B, Wertman WA, et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys. 2009;74(5):1494–500.CrossRefPubMedGoogle Scholar
  25. 25.
    Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005;293(13):1653–62.CrossRefPubMedGoogle Scholar
  26. 26.
    Koran ME, Stewart S, Baker JC, Lipnik AJ, Banovac F, Omary RA, Brown DB. Five percent dextrose maximizes dose delivery of yttrium-90 resin microspheres and reduces rates of premature stasis compared to sterile water. Biomed Rep. 2016;5:745–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Turner JH, Claringbold PG, Klemp PF, Cameron PJ, Martindale AA, Glancy RJ, et al. 166Ho-microsphere liver radiotherapy: a preclinical SPECT dosimetry study in the pig. Nucl Med Commun. 1994;15(7):545–53.CrossRefPubMedGoogle Scholar
  28. 28.
    Vente MA, Hobbelink MG, van Het Schip AD, Zonnnenberg BA, Nijsen JF. Radionuclide liver cancer therapies: from concept to current clinical status. Anticancer Agent Med Chem. 2007;7(4):441–59.CrossRefGoogle Scholar
  29. 29.
    Smits MLJ, Nijsen JFW, van der Bosch MAAJ, Lam MGEH, Vente MAD, Huijbregts JE, et al. Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial. J Exp Clin Cancer Res. 2010;29:70. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dale RG. Dose-rate effects in targeted radiotherapy. Phys Med Biol. 1996;41:1871–84.CrossRefPubMedGoogle Scholar
  31. 31.
    Zielhuis SW, Nijsen JFW, de Roos R, Krijger GC, van Rijk PP, Hennink WE, van het Schip AD. Production of GMP-grade radioactive holmium loaded poly(L-lactic acid) microspheres for clinical application. Int J Pharm. 2006;311:69–74.CrossRefPubMedGoogle Scholar
  32. 32.
    Zielhuis SW, Nijsen JFW, Krijger GC, van het Schip AD, Hennink WE. Holmium-loaded poly (L-lactic acid) microspheres: in vitro degradation study. Biomacromolecules. 2006;7(7):2217–23.Google Scholar
  33. 33.
    Yavari K, Yeganeh E, Abolghasemi H. Production and characterization of 166Ho polylactic acid microspheres. J Label Compd Radiopharm. 2016;59:24–9.CrossRefGoogle Scholar
  34. 34.
    Vente MAD, de Wit TC, van den Bosch MAAJ, Bult W, Seeninck PR, Zonnenberg BA, et al. Holmium-166 poly(l-lactic acid) microsphere radioembolization of the liver: technical aspects studied in a large animal model. Eur Radiol. 2010;20:862–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Prince JF. Holmium radioembolization: efficacy and safety. PhD thesis. 2016. ISBN 978–90–393-6489-5.Google Scholar
  36. 36.
    Smits MLJ, Nijsen JFW, van der Bosch MAAJ, Lam MGEH, Vente MAD, Mali WP, et al. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose escalation study. Lancet Oncol. 2012;13:1025–34.CrossRefPubMedGoogle Scholar
  37. 37.
    Prince JF, van Rooij R, Bol GH, de Jong HWAM, van den Bosch MAAJ. Safety of a scout dose preceding hepatic radioembolization with 166Ho microspheres. J Nucl Med. 2015;56:817–23.CrossRefPubMedGoogle Scholar
  38. 38.
    Elschot M, Nijsen JFW, Lam MGEH, Smits MLJ, Prince JF, Viergever MA, et al. 99mTc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with 166Ho-microspheres. Eur J Nucl Med Mol Imaging. 2014;41:1965–75.Google Scholar
  39. 39.
    Cosimelli M. The evolution of radioembolization. Lancet Oncol. 2012;13:965–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Hafeli UO, Casillas S, Dietz DW, Pauer GJ, Rybicki LA, Conzone SD, et al. Hepatic tumor radioembolization in a rat model using radioactive rhenium (186Re/188Re) glass microspheres. Int J Radiat Oncol Biol Phys. 1999;44(1):189–99.CrossRefPubMedGoogle Scholar
  41. 41.
    Hafeli UO, Roberts WK, Pauer GJ, Kraeft SK, Macklis RM. Stability of biodegradable radioactive rhenium (Re-186 and Re-188) microspheres after neutron-activation. Appl Radiat Isot. 2001;54:869–79.CrossRefPubMedGoogle Scholar
  42. 42.
    Wunderlich G, Pinkert J, Andreeff M, Stintz M, Knapp FF, Kropp J, Franke WG. Preparation and biodistribution of rhenium-188 labeled albumin microspheres B20: a promising new agent for radiotherapy. Appl Radiat Isot. 2000;52:63–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Wunderlich G, Drews A, Kotzerke J. A kit for labeling of [188Re]human serum albumin microspheres for therapeutic use in nuclear medicine. Appl Radiat Isot. 2005;62:915–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Nowicki ML, Cwikla JB, Sankowski AJ, Shcherbinin AJ, Grimes J, Celler A, et al. Initial study of radiological and clinical efficacy radioembolization using 188Re-human serum albumin (HSA) microspheres in patients with progressive, unresectable primary or secondary lung cancers. Med Sci Monit. 2014;20:1353–62.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fondazione IRCCS “Istituto dei Tumori”, Nuclear Medicine UnitMilanItaly

Personalised recommendations