Skip to main content

Satisfiability Modulo Transcendental Functions via Incremental Linearization

  • Conference paper
  • First Online:
Automated Deduction – CADE 26 (CADE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10395))

Included in the following conference series:

Abstract

In this paper we present an abstraction-refinement approach to Satisfiability Modulo the theory of transcendental functions, such as exponentiation and trigonometric functions. The transcendental functions are represented as uninterpreted in the abstract space, which is described in terms of the combined theory of linear arithmetic on the rationals with uninterpreted functions, and are incrementally axiomatized by means of upper- and lower-bounding piecewise-linear functions. Suitable numerical techniques are used to ensure that the abstractions of the transcendental functions are sound even in presence of irrationals. Our experimental evaluation on benchmarks from verification and mathematics demonstrates the potential of our approach, showing that it compares favorably with delta-satisfiability/interval propagation and methods based on theorem proving.

This work was funded in part by the H2020-FETOPEN-2016-2017-CSA project SC\(^2\) (712689). We thank James Davenport and Erika Abraham for useful discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For simplicity, we assume that this is always possible. If needed, this can be implemented e.g. by generating the two points at random while ensuring that \(l< \widehat{\mu }[x] < u\) and that lu do not cross any inflection point.

  2. 2.

    Although, as mentioned above, this is not the case in general (see e.g. [21]), it is true for some special values, e.g. \(\exp (0) = 1\), \(\sin (0) = 0\).

  3. 3.

    We remark that our tool (see Sect. 6) can handle also \(\log \), \(\cos \), \(\tan \), \(\arcsin \), \(\arccos \), \(\arctan \) by means of rewriting. We leave as future work the possibility of handling such functions natively.

  4. 4.

    Because (i) \(\exp (0)=1\), \(\sin (0)=0\), \(\cos (0)=1\), (ii) \(\exp ^{(i)}(x) = \exp (x)\) for all i, and (iii) \(|\sin ^{(i)}(x)|\) is \(|\cos (x)|\) if i is odd and \(|\sin (x)|\) otherwise.

  5. 5.

    In the interval \([-\pi , \pi ]\), the concavity of \(\sin (c)\) is the opposite of the sign of c.

  6. 6.

    Sometimes we used a relational encoding: e.g. if \(\varphi \) contains \(\arcsin (x)\), we rewrite it as , where \(as_x\) is a fresh variable.

  7. 7.

    There was no case in which two tools reported Sat and Unsat for the same benchmark.

  8. 8.

    According to the documentation of \({\textsc {MetiTarski}}\), the tool is ineffective for problems with more than 10 real variables. Our experiments on a subset of the instances confirmed this.

  9. 9.

    We contacted the authors of dReal and they reported that this issue is currently under investigation.

References

  1. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-valued special functions. JAR 44(3), 175–205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allamigeon, X., Gaubert, S., Magron, V., Werner, B.: Certification of inequalities involving transcendental functions: combining SDP and max-plus approximation. In: 2013 European Control Conference (ECC), pp. 2244–2250. IEEE (2013)

    Google Scholar 

  3. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and translation tool for hybrid automaton models. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, pp. 128–133. ACM (2015)

    Google Scholar 

  4. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9_22

    Google Scholar 

  5. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant checking of NRA transition systems via incremental reduction to LRA with EUF. In: Legay and Margaria [16], pp. 58–75. https://es-static.fbk.eu/people/griggio/papers/tacas17.pdf

  6. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-Based model checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 52–67. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0_4

    Google Scholar 

  7. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7_7

    Chapter  Google Scholar 

  8. Cimatti, A., Mover, S., Sessa, M.: From electrical switched networks to hybrid automata. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 164–181. Springer, Cham (2016). doi:10.1007/978-3-319-48989-6_11

    Chapter  Google Scholar 

  9. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implementation of an elementary function using Gappa. IEEE Trans. Comput. 60(2), 242–253 (2011)

    Article  MathSciNet  Google Scholar 

  10. Eggers, A., Kruglov, E., Kupferschmid, S., Scheibler, K., Teige, T., Weidenbach, C.: Superposition modulo non-linear arithmetic. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 119–134. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24364-6_9

    Chapter  Google Scholar 

  11. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT 1(3–4), 209–236 (2007)

    MATH  Google Scholar 

  12. Gao, S., Avigad, J., Clarke, E.M.: \(\delta \)-Complete decision procedures for satisfiability over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 286–300. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3_23

    Chapter  Google Scholar 

  13. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2_14

    Chapter  Google Scholar 

  14. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of SMT-based algorithms. In: SMT, pp. 373–384 (2015)

    Google Scholar 

  15. Hazewinkel, M.: Encyclopaedia of Mathematics: Stochastic Approximation Zygmund Class of Functions. Encyclopaedia of Mathematics. Springer, Netherlands (1993). https://books.google.it/books?id=1ttmCRCerVUC

  16. Legay, A., Margaria, T. (eds.): TACAS 2017. LNCS, vol. 10205. Springer, Heidelberg (2017)

    Google Scholar 

  17. Magron, V.: NLCertify: a tool for formal nonlinear optimization. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 315–320. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44199-2_49

    Google Scholar 

  18. Martin-Dorel, É., Melquiond, G.: Proving tight bounds on univariate expressions with elementary functions in Coq. J. Autom. Reasoning 57(3), 187–217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Melquiond, G.: Coq-interval (2011)

    Google Scholar 

  20. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience, New York (1988)

    Book  MATH  Google Scholar 

  21. Nieven, I.: Numbers: Rational and Irrational. Mathematical Association of America (1961)

    Google Scholar 

  22. Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. TOCL 7(4), 723–748 (2006)

    Article  MathSciNet  Google Scholar 

  23. Roohi, N., Prabhakar, P., Viswanathan, M.: HARE: A hybrid abstraction refinement engine for verifying non-linear hybrid automata. In: Legay and Margaria [16], pp. 573–588

    Google Scholar 

  24. Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT solver iSAT. MBMV 13, 231–241 (2013)

    Google Scholar 

  25. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with taylor interval approximations. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 383–397. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38088-4_26

    Chapter  Google Scholar 

  26. Townsend, E.: Functions of a Complex Variable. Read Books (2007)

    Google Scholar 

  27. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Irfan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R. (2017). Satisfiability Modulo Transcendental Functions via Incremental Linearization. In: de Moura, L. (eds) Automated Deduction – CADE 26. CADE 2017. Lecture Notes in Computer Science(), vol 10395. Springer, Cham. https://doi.org/10.1007/978-3-319-63046-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63046-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63045-8

  • Online ISBN: 978-3-319-63046-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics