Skip to main content

Flexible Robotic Endoscopy Systems and the Future Ahead

  • Chapter
  • First Online:
Book cover Diagnostic and Therapeutic Procedures in Gastroenterology

Part of the book series: Clinical Gastroenterology ((CG))

Abstract

Robotics enables a variety of unconventional actuation strategies to be used for endoscopes, resulting in reduced trauma to the GI tract. For transmission of force to distally mounted endoscopic instruments, robotically actuated tendon-sheath mechanisms are the current state of the art. Robotics in surgical endoscopy enables an ergonomic mapping of the surgeon movements to remotely control the slave arms as well as to facilitate tissue manipulation. The learning curve for difficult procedures such as endoscopic submucosal dissection and full-thickness resection can be significantly reduced. Improved surgical outcomes are also observed from clinical and preclinical trials. The technology behind master-slave surgical robotics will continue to mature, with the addition of position and force sensors enabling better control and tactile feedback. More robotic-assisted gastrointestinal (GI) luminal and natural orifice transluminal endoscopic surgery (NOTES) systems are expected to be conducted in future, and gastroenterologists will have a key collaborative role to play.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Microsurgery device reduces surgeon tremor. Available: http://www.nibib.nih.gov/news-events/newsroom/microsurgery-device-reduces-surgeon-tremor.

  2. Antoniou GA, Riga CV, Mayer EK, Cheshire NJW, Bicknell CD. Clinical applications of robotic technology in vascular and endovascular surgery. J Vasc Surg. 2011;53:493–9.

    Article  PubMed  Google Scholar 

  3. Patel N, Darzi A, Teare J. The endoscopy evolution: ‘the superscope era’. Frontline Gastroenterol. 2015;6:101–7.

    Article  CAS  PubMed  Google Scholar 

  4. Yeung BPM, Gourlay T. A technical review of flexible endoscopic multitasking platforms. Int J Surg. 2012;10:345–54.

    Article  PubMed  Google Scholar 

  5. Bardou B, Nageotte F, Zanne P, de Mathelin M. Design of a telemanipulated system for transluminal surgery. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE; 2009, p. 5577–82.

    Google Scholar 

  6. Bardou B, Nageotte F, Zanne P, Mathelin M. Design of a Robotized Flexible Endoscope for natural orifice transluminal endoscopic surgery. In: Garbey M, Bass BL, Collet C, Mathelin M, Tran-Son-Tay R, editors. Computational surgery and dual training. Boston: Springer US; 2010. p. 155–70.

    Chapter  Google Scholar 

  7. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. An investigation of friction-based tendon sheath model appropriate for control purposes. Mech Syst Signal Process. 2013;42:97–114.

    Article  Google Scholar 

  8. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. Nonlinear modeling and parameter identification of dynamic friction model in tendon sheath for flexible endoscopic systems. In: ICINCO 2013 – proceedings of the 10th international conference on informatics in control, automation and robotics, vol. 2, Reykjavik, Iceland; 2013, p. 5–10.

    Google Scholar 

  9. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. Dynamic friction-based force feedback for tendon- sheath mechanism in NOTES system. Int J Comput Electr Eng. 2014;6:252–8.

    Article  Google Scholar 

  10. Hassani V, Tjahjowidodo T, Do TN. A survey on hysteresis modeling, identification and control. Mech Syst Signal Process. 2014;49:209–33.

    Article  Google Scholar 

  11. Nguyen TL, Do TN, Lau MWS, Phee SJ. Modelling, design, and control of a robotic running foot for footwear testing with flexible actuator. In: Presented at the 1st international conference in sports science & technology (ICSST), Singapore; 2014.

    Google Scholar 

  12. Do TN, Tjahjowidodo T, Lau MWS, Yamamoto T, Phee SJ. Hysteresis modeling and position control of tendon-sheath mechanism in flexible endoscopic systems. Mechatronics. 2014;24:12–22.

    Article  Google Scholar 

  13. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. Adaptive control of position compensation for cable-conduit mechanisms used in flexible surgical robots. In: ICINCO 2014 – proceedings of the 11th international conference on informatics in control, automation and robotics, Vienna, Austria; 2014. p. 110–7.

    Google Scholar 

  14. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. Nonlinear friction modelling and compensation control of hysteresis phenomena for a pair of tendon-sheath actuated surgical robots. Mech Syst Signal Process. 2015;60:770–84.

    Article  Google Scholar 

  15. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. Adaptive control for enhancing tracking performances of flexible tendon–sheath mechanism in natural orifice transluminal endoscopic surgery (NOTES). Mechatronics. 2015;28:67–78.

    Article  Google Scholar 

  16. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. A new approach of friction model for tendon-sheath actuated surgical systems: nonlinear modelling and parameter identification. Mech Mach Theory. 2015;85:14–24.

    Article  Google Scholar 

  17. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. Adaptive tracking approach of flexible cable conduit-actuated NOTES systems for early gastric cancer treatments. In: Filipe J, Gusikhin O, Madani K, Sasiadek J, editors. Informatics in control, automation and robotics, vol. 370: Springer International Publishing Switzerland; 2016. p. 79–97. https://link.springer.com/chapter/10.1007/978-3-319-26453-0_5.

  18. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. Enhanced performances for cable-driven flexible robotic systems with asymmetric backlash profile. In: Technologies for practical robot applications (TePRA), 2015 IEEE international conference on; 2015, p. 1–6.

    Google Scholar 

  19. Horise Y, Nishikawa A, Sekimoto M, Kitanaka Y, Miyoshi N, Takiguchi S, et al. Development and evaluation of a master-slave robot system for single-incision laparoscopic surgery. Int J Comput Assist Radiol Surg. 2012;7:289–96.

    Article  PubMed  Google Scholar 

  20. Cosentino F, Tumino E, Passoni GR, Morandi E, Capria A. Functional evaluation of the Endotics system, a new disposable self-propelled robotic colonoscope: in vitro tests and clinical trial. Int J Artif Organs. 2009;32:517–27.

    Article  PubMed  Google Scholar 

  21. Balasundaram I, Al-Hadad I, Parmar S. Recent advances in reconstructive oral and maxillofacial surgery. Br J Oral Maxillofac Surg. 2012;50(8):695–705.

    Google Scholar 

  22. Tumino E, Cosentino F, Passoni GR, Rigante A, Barbera R, Tauro A, Cosentino PE. Robotic colonoscopy. Osaka: InTech; 2011. https://www.intechopen.com/books/colonoscopy/robotic-colonoscopy.

  23. Patel N, Seneci C, Yang GZ, Darzi A, Teare J. Flexible platforms for natural orifice transluminal and endoluminal surgery. Endosc Int Open. 2014;2:E117–23.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Johnson PJ, Serrano CMR, Castro M, Kuenzler R, Choset H, Tully S, et al. Demonstration of Transoral surgery in cadaveric specimens with the Medrobotics flex system. Laryngoscope. 2013;123:1168–72.

    Article  PubMed  Google Scholar 

  25. Medrobotics. Medrobotics company website. Available: www.medrobotics.com.

  26. Shang J, Noonan DP, Payne C, Clark J, Sodergren MH, Darzi A, et al. An articulated universal joint based flexible access robot for minimally invasive surgery. In: 2011 IEEE international conference on robotics and automation (ICRA); 2011, p. 1147–52.

    Google Scholar 

  27. Phee SJ, Reddy N, Chiu PWY, Rebala P, Rao GV, Wang Z, et al. Robot-assisted endoscopic submucosal dissection is effective in treating patients with early-stage gastric neoplasia. Clin Gastroenterol Hepatol. 2012;10:1117–21.

    Article  PubMed  Google Scholar 

  28. Phee SJ, Ho KY, Lomanto D, Low SC, Huynh VA, Kencana AP, et al. Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave transluminal endoscopic robot (MASTER). Surg Endosc Other Intervent Tech. 2010;24:2293–8.

    Article  CAS  Google Scholar 

  29. Tajika M, Niwa Y, Bhatia V, Kondo S, Tanaka T, Mizuno N, et al. Comparison of endoscopic submucosal dissection and endoscopic mucosal resection for large colorectal tumors. Eur J Gastroenterol Hepatol. 2011;23:1042–9.

    PubMed  Google Scholar 

  30. Toyokawa T, Inaba T, Omote S, Okamoto A, Miyasaka R, Watanabe K, et al. Risk factors for perforation and delayed bleeding associated with endoscopic submucosal dissection for early gastric neoplasms: analysis of 1123 lesions. J Gastroenterol Hepatol. 2012;27:907–12.

    Article  PubMed  Google Scholar 

  31. Oka S, Tanaka S, Kaneko I, Mouri R, Hirata M, Kawamura T, et al. Advantage of endoscopic submucosal dissection compared with EMR for early gastric cancer. Gastrointest Endosc. 2006;64:877–83.

    Article  PubMed  Google Scholar 

  32. The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002. Gastrointest Endosc. 2003;58:S3–43.

    Google Scholar 

  33. Greenwald BD, Roberts KE. Endoscopic mucosal resection [Online]. Available: http://emedicine.medscape.com/article/1891659-overview#a1.

  34. Kume K. Endoscopic mucosal resection and endoscopic submucosal dissection for early gastric cancer: current and original devices. World J Gastrointest Endosc. 2009;1:21–31.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yoshida N, Yagi N, Inada Y, Kugai M, Yanagisawa A, Naito Y. Prevention and management of complications of and training for colorectal endoscopic submucosal dissection. Gastroenterol Res Pract. 2013;2013:287173.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Olympus. Endoscopic submucosal dissection product catalog. Tokyo: Olympus Corporation; 2017.

    Google Scholar 

  37. Chiu PW, Phee SJ, Wang Z, Sun Z, Poon CC, Yamamoto T, et al. Feasibility of full-thickness gastric resection using master and slave transluminal endoscopic robot and closure by overstitch: a preclinical study. Surg Endosc. 2014;28:319–24.

    Article  PubMed  Google Scholar 

  38. Judson I, Demetri G. Advances in the treatment of gastrointestinal stromal tumours. Ann Oncol. 2007;18(Suppl 10):x20–4.

    Article  PubMed  Google Scholar 

  39. Chiu PW, Phee SJ, Bhandari P, Sumiyama K, Ohya T, Wong J, et al. Enhancing proficiency in performing endoscopic submucosal dissection (ESD) by using a prototype robotic endoscope. Endosc Int Open. 2015;3:E439–42.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yamashita Y, Kimura T, Matsumoto S. A safe laparoscopic cholecystectomy depends upon the establishment of a critical view of safety. Surg Today. 2010;40:507–13.

    Article  PubMed  Google Scholar 

  41. Way LW, Stewart L, Gantert W, Liu K, Lee CM, Whang K, et al. Causes and prevention of laparoscopic bile duct injuries: analysis of 252 cases from a human factors and cognitive psychology perspective. Ann Surg. 2003;237:460–9.

    PubMed  PubMed Central  Google Scholar 

  42. Do TN, Seah TET, Phee SJ. Design and control of a novel mechatronic tracheostomy tube-inserted suction catheter for automated tracheal suctioning. In: The 7th IEEE international conference on cybernetics and intelligent systems (CIS) and the 7th IEEE international conference on robotics, automation and mechatronics (RAM) (CIS-RAM), Angkor Wat, Cambodia; 2015, p. 228–233.

    Google Scholar 

  43. Do TN, Seah TET, Phee SJ. Design and control of a mechatronic tracheostomy tube for automated tracheal suctioning. IEEE Trans Biomed Eng. 2016;63:1229–38.

    Article  PubMed  Google Scholar 

  44. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. Position control of asymmetric nonlinearities for a cable-conduit mechanism. IEEE Trans Autom Sci Eng. 2016;PP:99.

    Google Scholar 

  45. Wang JF, Lin K, Zheng W, Ho KY, Teh M, Yeoh KG, et al. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy improves in vivo diagnosis of esophageal squamous cell carcinoma at endoscopy. Sci Rep. 2015;5:12957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. Dynamic friction model for tendon-sheath actuated surgical robots: modelling and stability analysis. The proceedings of 3rd IFToMM international symposium on robotics and mechatronics, Singapore; 2013, p. 302–11.

    Google Scholar 

  47. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. Real-time enhancement of tracking performances for cable-conduit mechanisms-driven flexible robots. Robot Comput Integr Manuf. 2016;37:197–207.

    Article  Google Scholar 

  48. Do TN, Tjahjowidodo T, Lau MWS, Phee SJ. Performance control of tendon-driven endoscopic surgical robots with friction and hysteresis. arXiv preprint arXiv:1702.02063, 2017.

    Google Scholar 

  49. Do TN, Phee SJ. Haptic feedback in natural orifice transluminal endoscopic surgery (NOTES). arXiv preprint arXiv:1606.07574, 2016.

    Google Scholar 

  50. Nau P, Ellison EC, Muscarella P Jr, Mikami D, Narula VK, Needleman B, et al. A review of 130 humans enrolled in transgastric NOTES protocols at a single institution. Surg Endosc. 2011;25:1004–11.

    Article  PubMed  Google Scholar 

  51. Schmidt A, Meier B, Caca K. Endoscopic full-thickness resection: current status. World J Gastroenterol. 2015;21:9273–85.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Voermans RP, Henegouwen MIV, Bemelman WA, Fockens P. Hybrid NOTES transgastric cholecystectomy with reliable gastric closure: an animal survival study. Surg Endosc Other Intervent Tech. 2011;25:728–36.

    Article  Google Scholar 

  53. Do TN, Seah TET, Ho KY, Phee SJ. Correction: development and testing of a magnetically actuated capsule endoscopy for obesity treatment. PLoS One. 2016;11:e0151711.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Do TN, Seah TET, Yu HK, Phee SJ. Development and testing of a magnetically actuated capsule endoscopy for obesity treatment. PLoS One. 2016;11:e0148035.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Do TN, Ho KY, Phee SJ. A magnetic soft endoscopic capsule-inflated intragastric balloon for weight management. Sci Rep. 2016;6:39486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Do TN, Phan PT, Ho KY, Phee SJ. A magnetic soft endoscopic capsule for non-surgical overweight and obese treatments. 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS); 9–14 October 2016, p. 2388–93.

    Google Scholar 

  57. Le HM, Do TN, Phee SJ. A survey on actuators-driven surgical robots. Sens Actuators A Phys. 2016;247:323–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank National Research Foundation (NRF) with NRF Investigatorship Award (NRF-NRFI2016-07) from Prime Minister’s Office of Singapore for funding supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Nho Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seah, T.E.T., Do, T.N., Takeshita, N., Ho, K.Y., Phee, S.J. (2018). Flexible Robotic Endoscopy Systems and the Future Ahead. In: Sridhar, S., Wu, G. (eds) Diagnostic and Therapeutic Procedures in Gastroenterology. Clinical Gastroenterology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-62993-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62993-3_41

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-62991-9

  • Online ISBN: 978-3-319-62993-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics