Skip to main content

Mathematical Modelling with Increasing Learning Aids: A Video Study

  • Chapter
  • First Online:
Mathematical Modelling and Applications

Abstract

This study aims at supporting learners’ competency of mathematical modelling in ordinary mathematics lessons by using increasing learning aids in a self-regulated learning environment. The study intends to evaluate the feasibility of the approach by carrying out a case study. Thirty seventh-graders were video- and audio-recorded while working on complex modelling problems supported by increasing learning aids and a diagram of the modelling cycle enhanced to indicate potential areas of difficulty or blockages to progress as a metacognitive aid. First results point out that the usage of increasing learning aids for solving mathematical modelling problems supports modelling activities. In this chapter, an overview on the modelling tasks is presented, with one task presented in detail. General results and results for one specific group will be reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aebli, H. (1985). Zwölf Grundformen des Lehrens. Stuttgart: Klett-Cotta.

    Google Scholar 

  • Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 15–30). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The proceedings of the 12th international congress on mathematical education (pp. 73–96). Cham: Springer.

    Google Scholar 

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the craft of reading, writing and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 453–494). Hillsdale: Erlbaum.

    Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM–Mathematics Education, 38(3), 302–310.

    Google Scholar 

  • Kaiser, G., & Stender, P. (2013). Complex modelling problems in co-operative, self-directed learning environments. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 277–293). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kaiser, G., Blum, W., Borromeo Ferri, R., & Stillman, G. (2011). Trends in teaching and learning of mathematical modelling—Preface. In Trends in teaching and learning of mathematical modelling (pp. 1–5). Dordrecht: Springer.

    Google Scholar 

  • Kaiser, G., Bracke, M., Göttlich, S., & Kaland, C. (2013). Authentic complex modelling problems in mathematics education. In A. Damlamian, J. F. Rodrigues, & R. Sträßer (Eds.), Educational interfaces between mathematics and industry (pp. 287–297). Cham: Springer.

    Chapter  Google Scholar 

  • Kaiser, G., Blum, W., Borromeo Ferri, R., & Greefrath, G. (2015). Anwendungen und Modellieren. In R. Bruder, L. Hefendehl-Hebeker, B. Schmidt-Thieme, & H.-G. Weigand (Eds.), Handbuch der Mathematikdidaktik (pp. 357–381). Berlin: Springer.

    Google Scholar 

  • Kuckartz, U. (2014). Qualitative text analysis: A guide to methods, practice and using software. London: Sage.

    Book  Google Scholar 

  • Leisen, J. (Ed.). (1999). Methodenhandbuch deutschsprachiger Fachunterricht. Bonn: DFU.

    Google Scholar 

  • Maaß, K. (2006). What are modelling competencies? ZDM–Mathematics Education, 38(2), 113–142.

    Google Scholar 

  • Schmidt-Weigand, F., Hänze, M., & Wodzinski, R. (2012). How can self-regulated problem solving be implemented in the school curriculum? Results from a research project on incremental worked examples. In M. Edwards & S. O. Adams (Eds.), Learning strategies, expectations and challenges (pp. 45–69). Hauppauge: Nova.

    Google Scholar 

  • Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: A decade of research. Education Psychology Review, 22, 271–293.

    Article  Google Scholar 

  • Weinert, F. E. (1996). Lerntheorien und Instruktionsmodelle. In F. E. Weinert (Ed.), Psychologie des Lernens und der Instruktion. Enzyklopädie der Psychologie (Vol. DI2, pp. 1–48). Göttingen: Hofgrefe.

    Google Scholar 

  • Wodzinski, R., Hänze, M., & Stäudel, L. (2006). Lernen von Physik und Chemie durch Aufgaben mit gestuften Hilfen. In A. Pitton (Ed.), Lehren und Lernen mit Neuen Medien. Gesellschaft für Didaktik der Chemie und Physik. Jahrestagung der GDCP in Paderborn 2005 (pp. 251–253). Münster: Lit-Verlag.

    Google Scholar 

  • Zech, F. (2002). Grundkurs Mathematikdidaktik, Theoretische und praktische Anleitungen für das Lehren und Lernen von Mathematik. Weinheim: Belz.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deike S. Alfke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alfke, D.S. (2017). Mathematical Modelling with Increasing Learning Aids: A Video Study. In: Stillman, G., Blum, W., Kaiser, G. (eds) Mathematical Modelling and Applications. International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-62968-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62968-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62967-4

  • Online ISBN: 978-3-319-62968-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics