Vitiligo pp 313-328 | Cite as

Regenerating Melanocytes: Current Stem Cell Approaches with Focus on Muse Cells

  • Mari DezawaEmail author
  • Kenichiro Tsuchiyama
  • Kenshi Yamazaki
  • Setsuya Aiba


Muse cells are recently found endogenous non-tumorigenic pluripotent stem cells that reside in connective tissue of various organs including the dermis and in the bone marrow. They are collectable as cells positive for stage-specific embryonic antigen (SSEA)-3, a pluripotent surface marker, from tissues, and are expandable in vitro. Other than SSEA-3, they express Oct3/4, Nanog and Sox, other pluripotent genes. Notably, they are able to differentiate into cells representative of all three germ layers from single cells and are self-renewable, suggesting their pluripotency. Muse cells collected from human dermal fibroblasts (dermal-Muse cells) were shown to efficiently differentiate into melanin-producing functional melanocytes by treating them with ten factors. Functions of melanocytes induced from Muse cells (Muse melanocytes) were comparable to that of primary human melanocytes. Melanin-producing ability of human Muse melanocytes was retained when they were incorporated into human-colored three-dimensional (3D) cultured skin and even after transplantation of the 3D-cultured skin into the back of immunodeficient mice. Since Muse cells are non-tumorigenic and harvestable from easy accessible sources such as skin biopsy and dermal fibroblasts, Muse melanocytes are beneficial for both industrial and clinical uses.


  1. 1.
    Fioramonti P, Onesti MG, Marchese C, Carella S, Ceccarelli S, Scuderi N. Autologous cultured melanocytes in vitiligo treatment comparison of two techniques to prepare the recipient site: erbium-doped yttrium aluminum garnet laser versus dermabrasion. Dermatol Surg. 2012;38(5):809–12. Scholar
  2. 2.
    van Geel N, Ongenae K, Naeyaert JM. Surgical techniques for vitiligo: a review. Dermatology. 2001;202(2):162–6. Scholar
  3. 3.
    Fang D, Leishear K, Nguyen TK, Finko R, Cai K, Fukunaga M, et al. Defining the conditions for the generation of melanocytes from human embryonic stem cells. Stem Cells. 2006;24(7):1668–77. Scholar
  4. 4.
    Motohashi T, Aoki H, Yoshimura N, Kunisada T. Induction of melanocytes from embryonic stem cells and their therapeutic potential. Pigment Cell Res. 2006;19(4):284–9. Scholar
  5. 5.
    Nissan X, Larribere L, Saidani M, Hurbain I, Delevoye C, Feteira J, et al. Functional melanocytes derived from human pluripotent stem cells engraft into pluristratified epidermis. Proc Natl Acad Sci U S A. 2011;108(36):14861–6. Scholar
  6. 6.
    Ohta S, Imaizumi Y, Okada Y, Akamatsu W, Kuwahara R, Ohyama M, et al. Generation of human melanocytes from induced pluripotent stem cells. PLoS One. 2011;6(1):e16182. Scholar
  7. 7.
    Yamane T, Hayashi S, Mizoguchi M, Yamazaki H, Kunisada T. Derivation of melanocytes from embryonic stem cells in culture. Dev Dyn. 1999;216(4–5):450–8.<450::AID-DVDY13>3.0.CO;2-0.CrossRefPubMedGoogle Scholar
  8. 8.
    Yang R, Jiang M, Kumar SM, Xu T, Wang F, Xiang L, et al. Generation of melanocytes from induced pluripotent stem cells. J Invest Dermatol. 2011;131(12):2458–66. Scholar
  9. 9.
    Knoppers BM, Bordet S, Isasi R. The human embryo: ethical and legal aspects. Methods Mol Biol. 2009;550:281–305. Scholar
  10. 10.
    Manzar N, Manzar B, Hussain N, Hussain MF, Raza S. The ethical dilemma of embryonic stem cell research. Sci Eng Ethics. 2013;19(1):97–106. Scholar
  11. 11.
    Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11(4):268–77. Scholar
  12. 12.
    Fong CY, Gauthaman K, Bongso A. Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem. 2010;111(4):769–81. Scholar
  13. 13.
    Goldring CE, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, et al. Assessing the safety of stem cell therapeutics. Cell Stem Cell. 2011;8(6):618–28. Scholar
  14. 14.
    Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–7. Scholar
  15. 15.
    Paino F, Ricci G, De Rosa A, D’Aquino R, Laino L, Pirozzi G, et al. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur Cell Mater. 2010;20:295–305.CrossRefGoogle Scholar
  16. 16.
    Stevens A, Zuliani T, Olejnik C, LeRoy H, Obriot H, Kerr-Conte J, et al. Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev. 2008;17(6):1175–84. Scholar
  17. 17.
    Heneidi S, Simerman AA, Keller E, Singh P, Li X, Dumesic DA, et al. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS One. 2013;8(6):e64752. Scholar
  18. 18.
    Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A. 2010a;107(19):8639–43. 0911647107 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M. Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc. 2013;8(7):1391–415. Scholar
  20. 20.
    Liu Q, Zhang RZ, Li D, Cheng S, Yang YH, Tian T, et al. Muse cells, a new type of pluripotent stem cell derived from human fibroblasts. Cell Reprogram. 2016;18(2):67–77. Scholar
  21. 21.
    Ogura F, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S, et al. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev. 2014;23(7):717–28. Scholar
  22. 22.
    Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H, et al. Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci U S A. 2011;108(24):9875–80. Scholar
  23. 23.
    Dezawa M. Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of Muse cells to tissue regeneration. Cell Transplant. 2016.
  24. 24.
    Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.CrossRefGoogle Scholar
  25. 25.
    Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood. 2008;112(9):3543–53. Scholar
  26. 26.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.PubMedGoogle Scholar
  27. 27.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRefGoogle Scholar
  28. 28.
    Kuroda Y, Kitada M, Wakao S, Dezawa M. Bone marrow mesenchymal cells: how do they contribute to tissue repair and are they really stem cells? Arch Immunol Ther Exp. 2011;59(5):369–78. Scholar
  29. 29.
    Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–84. Scholar
  30. 30.
    Qayyum AA, Haack-Sorensen M, Mathiasen AB, Jorgensen E, Ekblond A, Kastrup J. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regen Med. 2012;7(3):421–8. Scholar
  31. 31.
    Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005;309(5732):314–7. Scholar
  32. 32.
    Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284(5417):1168–70.CrossRefGoogle Scholar
  33. 33.
    Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest. 2004;113(12):1701–10. Scholar
  34. 34.
    Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci. 2001;14(11):1771–6.CrossRefGoogle Scholar
  35. 35.
    Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207(2):267–74. S0014-4886(07)00257-9 [pii].CrossRefPubMedGoogle Scholar
  36. 36.
    Fox NW, Damjanov I, Knowles BB, Solter D. Stage-specific embryonic antigen 3 as a marker of visceral extraembryonic endoderm. Dev Biol. 1984;103(1):263–6.CrossRefGoogle Scholar
  37. 37.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.CrossRefGoogle Scholar
  38. 38.
    Galderisi U, Giordano A. The gap between the physiological and therapeutic roles of mesenchymal stem cells. Med Res Rev. 2014;34(5):1100–26. Scholar
  39. 39.
    Hori E, Hayakawa Y, Hayashi T, Hori S, Okamoto S, Shibata T, et al. Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovasc Dis. 2016.
  40. 40.
    Kinoshita K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H, et al. Therapeutic potential of adipose-derived SSEA-3-positive muse cells for treating diabetic skin ulcers. Stem Cells Transl Med. 2015;4(2):146–55. Scholar
  41. 41.
    Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, et al. Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells. 2016;34(1):160–73. Scholar
  42. 42.
    Tsuchiyama K, Wakao S, Kuroda Y, Ogura F, Nojima M, Sawaya N, et al. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts. J Invest Dermatol. 2013;133(10):2425–35. Scholar
  43. 43.
    Katagiri H, Kushida Y, Nojima M, Kuroda Y, Wakao S, Ishida K, et al. A distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components. Am J Transplant. 2016;16(2):468–83. Scholar
  44. 44.
    Yamauchi T, Kuroda Y, Morita T, Shichinohe H, Houkin K, Dezawa M, et al. Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One. 2015;10(3):e0116009. Scholar
  45. 45.
    Dong L, Li Y, Cao J, Liu F, Pier E, Chen J, et al. FGF2 regulates melanocytes viability through the STAT3-transactivated PAX3 transcription. Cell Death Differ. 2012;19(4):616–22. Scholar
  46. 46.
    Kondo T, Hearing VJ. Update on the regulation of mammalian melanocyte function and skin pigmentation. Expert Rev Dermatol. 2011;6(1):97–108. Scholar
  47. 47.
    Steingrimsson E, Copeland NG, Jenkins NA. Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet. 2004;38:365–411. Scholar
  48. 48.
    Lee SA, Son YO, Kook SH, Choi KC, Lee JC. Ascorbic acid increases the activity and synthesis of tyrosinase in B16F10 cells through activation of p38 mitogen-activated protein kinase. Arch Dermatol Res. 2011;303(9):669–78. Scholar
  49. 49.
    Motohashi T, Aoki H, Chiba K, Yoshimura N, Kunisada T. Multipotent cell fate of neural crest-like cells derived from embryonic stem cells. Stem Cells. 2007;25(2):402–10. Scholar
  50. 50.
    Toma JG, McKenzie IA, Bagli D, Miller FD. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells. 2005;23(6):727–37. Scholar
  51. 51.
    Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6(11):1082–93. Scholar
  52. 52.
    Joannides A, Gaughwin P, Schwiening C, Majed H, Sterling J, Compston A, et al. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet. 2004;364(9429):172–8. Scholar
  53. 53.
    Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3(9):778–84. Scholar
  54. 54.
    Li L, Fukunaga-Kalabis M, Yu H, Xu X, Kong J, Lee JT, et al. Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci. 2010;123.(Pt 6:853–60. Scholar
  55. 55.
    Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol. 2006;168(6):1879–88. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mari Dezawa
    • 1
    Email author
  • Kenichiro Tsuchiyama
    • 2
  • Kenshi Yamazaki
    • 2
  • Setsuya Aiba
    • 2
  1. 1.Department of Stem Cell Biology and HistologyTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations