Advertisement

Vitiligo pp 265-275 | Cite as

Melanocyte Homeostasis in Vitiligo

  • Véronique Delmas
  • Lionel LarueEmail author
Chapter

Abstract

To understand the pathophysiology of pigmentary disorders, such as vitiligo, it is essential to understand the development and homeostasis of melanocytes, the cells that produce the melanin pigment. In this chapter, we will concentrate on classical melanocytes that give rise to skin colour that can be lost in depigmented region of vitiligo patients. We address the origins of melanocytes during development, the homeostasis of these cells and their renewal during the course of life. We focus on the early alterations of melanocyte homeostasis that appeared before the depigmentation of the skin in vitiligo patients and highlight the key role of E-cadherin, the main cell-cell adhesion molecule that links melanocyte to the surrounding keratinocytes in the epidermis.

Notes

Acknowledgments

We thank all members of the laboratory, especially F. Luciani, A. Rubod, R. Wagner, and C. Grill who participated actively in the experimental work. This work was supported by the Ligue Nationale Contre le Cancer, Société Française de Dermatologie (SFD), INCa, and ITMO Cancer and is under the program “Investissements d’Avenir” launched by the French Government and implemented by ANR LabEx CelTisPhyBio (ANR-11-LBX-0038 and ANR-10-IDEX-0001-02 PSL).

References

  1. 1.
    Petit V, Larue L. Any route for melanoblasts to colonize the skin! Exp Dermatol. 2016;25:669–73.CrossRefGoogle Scholar
  2. 2.
    Colombo S, Berlin I, Delmas V, Larue L. Classical and nonclassical melanocytes in vertebrates. In: Borovanský J, Riley PA, editors. Melanins melanosomes biosynthesis, biogenesis, physiological, patholological functions. Weinheim: Willey-Blackwell; 2011.Google Scholar
  3. 3.
    Gudjohnsen SAH, Atacho DAM, Gesbert F, Raposo G, Hurbain I, Larue L, Steingrimsson E, Petersen PH. Meningeal melanocytes in the mouse: distribution and dependence on Mitf. Front Neuroanat. 2015;9:149.CrossRefGoogle Scholar
  4. 4.
    Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Müller T, Fritz N, Beljajeva A, Mochii M, Liste I, et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell. 2009;139:366–79.CrossRefGoogle Scholar
  5. 5.
    Costin G-E, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 2007;21:976–94.CrossRefGoogle Scholar
  6. 6.
    Larue L, de Vuyst F, Delmas V. Modeling melanoblast development. Cell Mol Life Sci. 2013;70:1067–79.CrossRefGoogle Scholar
  7. 7.
    Van Raamsdonk CD, Deo M. Links between Schwann cells and melanocytes in development and disease. Pigment Cell Melanoma Res. 2013;26:634–45.CrossRefGoogle Scholar
  8. 8.
    Luciani F, Champeval D, Herbette A, Denat L, Aylaj B, Martinozzi S, Ballotti R, Kemler R, Goding CR, De Vuyst F, et al. Biological and mathematical modeling of melanocyte development. Development. 2011;138:3943–54.CrossRefGoogle Scholar
  9. 9.
    Osawa M. Melanocyte stem cells. In: StemBook. Cambridge, MA: Harvard Stem Cell Institute; 2009.Google Scholar
  10. 10.
    Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev. 2011;91:691–731.CrossRefGoogle Scholar
  11. 11.
    Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol. 2000;299:551–72.CrossRefGoogle Scholar
  12. 12.
    Vleminckx K, Kemler R. Cadherins and tissue formation: integrating adhesion and signaling. BioEssays. 1999;21:211–20.CrossRefGoogle Scholar
  13. 13.
    Aktary Z, Bertrand JU, Larue L. The WNT-less wonder: WNT-independent β-catenin signaling. Pigment Cell Melanoma Res. 2016;29:524–40.CrossRefGoogle Scholar
  14. 14.
    Pla P, Moore R, Morali OG, Grille S, Martinozzi S, Delmas V, Larue L. Cadherins in neural crest cell development and transformation. J Cell Physiol. 2001;189:121–32.CrossRefGoogle Scholar
  15. 15.
    Nishimura EK, Yoshida H, Kunisada T, Nishikawa SI. Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. Dev Biol. 1999;215:155–66.CrossRefGoogle Scholar
  16. 16.
    Wagner RY, Luciani F, Cario-André M, Rubod A, Petit V, Benzekri L, Ezzedine K, Lepreux S, Steingrimsson E, Taieb A, et al. Altered E-cadherin levels and distribution in melanocytes precede clinical manifestations of vitiligo. J Invest Dermatol. 2015;135(7):1810–9.CrossRefGoogle Scholar
  17. 17.
    Jimbow K, Quevedo WC, Fitzpatrick TB, Szabo G. Some aspects of melanin biology: 1950–1975. J Invest Dermatol. 1976;67:72–89.CrossRefGoogle Scholar
  18. 18.
    Glimcher ME, Kostick RM, Szabo G. The epidermal melanocyte system in newborn human skin. A quantitative histologic study. J Invest Dermatol. 1973;61:344–7.CrossRefGoogle Scholar
  19. 19.
    Jimbow K, Roth SI, Fitzpatrick TB, Szabo G. Mitotic activity in non-neoplastic melanocytes in vivo as determined by histochemical, autoradiographic, and electron microscope studies. J Cell Biol. 1975;66:663–70.CrossRefGoogle Scholar
  20. 20.
    Whiteman DC, Parsons PG, Green AC. Determinants of melanocyte density in adult human skin. Arch Dermatol Res. 1999;291:511–6.CrossRefGoogle Scholar
  21. 21.
    Hirobe T. How are proliferation and differentiation of melanocytes regulated? Pigment Cell Melanoma Res. 2011;24(3):462–78.CrossRefGoogle Scholar
  22. 22.
    Li L, Fukunaga-Kalabis M, Yu H, Xu X, Kong J, Lee JT, Herlyn M. Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci. 2010;123:853–60.CrossRefGoogle Scholar
  23. 23.
    Okamoto N, Aoto T, Uhara H, Yamazaki S, Akutsu H, Umezawa A, Nakauchi H, Miyachi Y, Saida T, Nishimura EK. A melanocyte--melanoma precursor niche in sweat glands of volar skin. Pigment Cell Melanoma Res. 2014;27:1039–50.CrossRefGoogle Scholar
  24. 24.
    Nishimura EK, Granter SR, Fisher DE. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science. 2005;307:720–4.CrossRefGoogle Scholar
  25. 25.
    Gauthier Y, Cario-Andre M, Lepreux S, Pain C, Taïeb A. Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo. Br J Dermatol. 2003;148:95–101.CrossRefGoogle Scholar
  26. 26.
    Tarlé RG, Silva de Castro CC, do Nascimento LM, Mira MT. Polymorphism of the E-cadherin gene CDH1 is associated with susceptibility to vitiligo. Exp Dermatol. 2015;24:300–2.CrossRefGoogle Scholar
  27. 27.
    Muise AM, Walters TD, Glowacka WK, Griffiths AM, Ngan B-Y, Lan H, Xu W, Silverberg MS, Rotin D. Polymorphisms in E-cadherin (CDH1) result in a mis-localised cytoplasmic protein that is associated with Crohn’s disease. Gut. 2009;58:1121–7.CrossRefGoogle Scholar
  28. 28.
    Kim N-H, Lee A-Y. Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo. J Invest Dermatol. 2010;130:2231–9.CrossRefGoogle Scholar
  29. 29.
    Liu J, Man WY, Lv CZ, Song SP, Shi YJ, Elias PM, Man MQ. Epidermal permeability barrier recovery is delayed in vitiligo-involved sites. Skin Pharmacol Physiol. 2010;23:193–200.CrossRefGoogle Scholar
  30. 30.
    Taïeb A. Intrinsic and extrinsic pathomechanisms in vitiligo. Pigment Cell Res. 2000;13(Suppl 8):41–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.INSERM U1021, Normal and Pathological Development of MelanocytesInstitut Curie, PSL Research UniversityOrsayFrance

Personalised recommendations