Advertisement

Vitiligo pp 189-192 | Cite as

Pathophysiology Overview

  • Mauro PicardoEmail author
Chapter

Abstract

Thanks to the advances in technology over the past few years, there has been an ongoing and in-depth study of the genes that make up the human being as a whole and more specifically those involved in pathologies and diseases affecting the general population. So far, over 50 different vitiligo susceptible genes have been identified [1–3]. Gaining a better understanding of the genes involved in vitiligo may in the future lead to a better approach in treating vitiligo and might even allow for disease prevention in genetically susceptible individuals.

References

  1. 1.
    Spritz RA, Andersen GH. Genetics of vitiligo. Dermatol Clin. 2017;35(2):245–55.  https://doi.org/10.1016/j.det.2016.11.013.CrossRefGoogle Scholar
  2. 2.
    Shen C, Gao J, Sheng Y, Dou J, Zhou F, Zheng X, Ko R, Tang X, Zhu C, Yin X, Sun L, Cui Y, Zhang X. Genetic susceptibility to vitiligo: GWAS approaches for identifying vitiligo susceptibility genes and loci. Front Genet. 2016;7:3.  https://doi.org/10.3389/fgene.2016.00003.
  3. 3.
    Spritz RA. Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis. J Invest Dermatol. 2012;132(2):268–73.  https://doi.org/10.1038/jid.2011.321.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 2003;16(3):208–14.CrossRefGoogle Scholar
  5. 5.
    Picardo M, Dell’Anna ML, Ezzedine K, Hamzavi I, Harris JE, Parsad D, Taieb A. Vitiligo. Nat Rev Dis Primers. 2015;1:15011.  https://doi.org/10.1038/nrdp.2015.11.CrossRefGoogle Scholar
  6. 6.
    Schallreuter KU, Moore J, Wood JM, Beazley WD, Gaze DC, Tobin DJ, Marshall HS, Panske A, Panzig E, Hibberts NA. In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Investig Dermatol Symp Proc. 1999;4(1):91–6.CrossRefGoogle Scholar
  7. 7.
    Bellei B, Pitisci A, Ottaviani M, Ludovici M, Cota C, Luzi F, Dell’Anna ML, Picardo M. Vitiligo: a possible model of degenerative diseases. PLoS One. 2013;8(3):e59782.  https://doi.org/10.1371/journal.pone.0059782.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lee AY. Role of keratinocytes in the development of vitiligo. Ann Dermatol. 2012;24(2):115–25.  https://doi.org/10.5021/ad.2012.24.2.115.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kovacs D, Bastonini E, Ottaviani M, Cota C, Migliano E, Dell’Anna ML, Picardo M. Vitiligo skin: exploring the dermal compartment. J Invest Dermatol. 2018;138:394.  https://doi.org/10.1016/j.jid.2017.06.033.. pii: S0022-202X(17)33029-4.CrossRefGoogle Scholar
  10. 10.
    Boniface K, Seneschal J, Picardo M, Taïeb A. Vitiligo: focus on clinical aspects, immunopathogenesis, and therapy. Clin Rev Allergy Immunol. 2018;54:52.  https://doi.org/10.1007/s12016-017-8622-7.CrossRefGoogle Scholar
  11. 11.
    Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin. J Invest Dermatol. 2012;132(7):1869–76.  https://doi.org/10.1038/jid.2011.463.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dwivedi M, Kemp EH, Laddha NC, Mansuri MS, Weetman AP, Begum R. Regulatory T cells in vitiligo: implications for pathogenesis and therapeutics. Autoimmun Rev. 2015;14(1):49–56.CrossRefGoogle Scholar
  13. 13.
    van Geel N, Speeckaert R. Segmental vitiligo. Dermatol Clin. 2017;35(2):145–50.  https://doi.org/10.1016/j.det.2016.11.005.CrossRefPubMedGoogle Scholar
  14. 14.
    Becatti M, Prignano F, Fiorillo C, Pescitelli L, Nassi P, Lotti T, Taddei N. The involvement of Smac/DIABLO, p53, NF-kB, and MAPK pathways in apoptosis of keratinocytes from perilesional vitiligo skin: protective effects of curcumin and capsaicin. Antioxid Redox Signal. 2010;13(9):1309–21.  https://doi.org/10.1089/ars.2009.2779.CrossRefPubMedGoogle Scholar
  15. 15.
    Shi F, Kong BW, Song JJ, Lee JY, Dienglewicz RL, Erf GF. Understanding mechanisms of vitiligo development in Smyth line of chickens by transcriptomic microarray analysis of evolving autoimmune lesions. BMC Immunol. 2012;13:18.  https://doi.org/10.1186/1471-2172-13-18.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW, Zhou Y, Deng A, Hunter CA, Luster AD, Harris JE. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6(223):223ra23.  https://doi.org/10.1126/scitranslmed.3007811.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Eby JM, Kang HK, Klarquist J, Chatterjee S, Mosenson JA, Nishimura MI, Garrett-Mayer E, Longley BJ, Engelhard VH, Mehrotra S, Le Poole IC. Immune responses in a mouse model of vitiligo with spontaneous epidermal de- and repigmentation. Pigment Cell Melanoma Res. 2014;27(6):1075–85.  https://doi.org/10.1111/pcmr.12284.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cutaneous Physiopathology and CIRMSan Gallicano Dermatological Institute, IRCCSRomeItaly

Personalised recommendations