Advertisement

Vitiligo pp 125-139 | Cite as

Vitiligo, Associated Disorders and Comorbidities (Autoimmune-Inflammatory Disorders, Immunodeficiencies, Rare Monogenic Diseases)

  • Julien SeneschalEmail author
  • Fanny Morice-Picard
  • Alain Taïeb
Chapter

Abstract

Vitiligo involves complex combinatorial factors, namely genetic predisposition, environmental triggers, metabolic abnormalities, and altered inflammatory and immune responses. The autoimmune and inflammatory theory is the leading hypothesis, and most vitiligo susceptibility loci identified studies encode immunomodulatory proteins. Therefore, vitiligo could be associated with other chronic autoimmune/inflammatory diseases, but also could occur in patients with inherited or acquired immunodeficiencies or patients with monogenic disorders that could impact immune response.

References

  1. 1.
    Spritz RA. Recent progress in the genetics of generalized vitiligo. J Genet Genomics. 2011;38:271–8.CrossRefGoogle Scholar
  2. 2.
    Spritz RA. Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis. J Invest Dermatol. 2012;132:268–73.CrossRefGoogle Scholar
  3. 3.
    Walker NF, Scriven J, Meintjes G, et al. Immune reconstitution inflammatory syndrome in HIV-infected patients. HIV AIDS (Auckl). 2015;7:49–64.Google Scholar
  4. 4.
    Chen JJ, Huang W, Gui JP, et al. A novel linkage to generalized vitiligo on 4q13-q21 identified in a genome-wide linkage analysis of Chinese families. Am J Hum Genet. 2005;76:1057–65.CrossRefGoogle Scholar
  5. 5.
    Jin Y, Birlea SA, Fain PR, et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44:676–80.CrossRefGoogle Scholar
  6. 6.
    Jin Y, Birlea SA, Fain PR, et al. Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med. 2010;362:1686–97.CrossRefGoogle Scholar
  7. 7.
    Jin Y, Birlea SA, Fain PR, et al. Common variants in FOXP1 are associated with generalized vitiligo. Nat Genet. 2010;42:576–8.CrossRefGoogle Scholar
  8. 8.
    Liang Y, Yang S, Zhou Y, et al. Evidence for two susceptibility loci on chromosomes 22q12 and 6p21-p22 in Chinese generalized vitiligo families. J Invest Dermatol. 2007;127:2552–7.CrossRefGoogle Scholar
  9. 9.
    Traks T, Karelson M, Reimann E, et al. Association analysis of class II cytokine and receptor genes in vitiligo patients. Hum Immunol. 2016;77:375–81.CrossRefGoogle Scholar
  10. 10.
    Jin Y, Andersen G, Yorgov D, et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet. 2016;48:1418–24.CrossRefGoogle Scholar
  11. 11.
    Birlea SA, Jin Y, Bennett DC, et al. Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP. J Invest Dermatol. 2011;131:371–81.CrossRefGoogle Scholar
  12. 12.
    Li K, Shi Q, Yang L, et al. The association of vitamin D receptor gene polymorphisms and serum 25-hydroxyvitamin D levels with generalized vitiligo. Br J Dermatol. 2012;167:815–21.CrossRefGoogle Scholar
  13. 13.
    Alkhateeb A, Fain PR, Thody A, et al. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 2003;16:208–14.CrossRefGoogle Scholar
  14. 14.
    Liu JB, Li M, Yang S, et al. Clinical profiles of vitiligo in China: an analysis of 3742 patients. Clin Exp Dermatol. 2005;30:327–31.CrossRefGoogle Scholar
  15. 15.
    Sheth VM, Guo Y, Qureshi AA. Comorbidities associated with vitiligo: a ten-year retrospective study. Dermatology. 2013;227:311–5.CrossRefGoogle Scholar
  16. 16.
    Silverberg JI, Silverberg NB. Association between vitiligo and atopic disorders: a pilot study. JAMA Dermatol. 2013;149:983–6.PubMedGoogle Scholar
  17. 17.
    Chen YT, Chen YJ, Hwang CY, et al. Comorbidity profiles in association with vitiligo: a nationwide population-based study in Taiwan. J Eur Acad Dermatol Venereol. 2015;29:1362–9.CrossRefGoogle Scholar
  18. 18.
    Gill L, Zarbo A, Isedeh P, et al. Comorbid autoimmune diseases in patients with vitiligo: a cross-sectional study. J Am Acad Dermatol. 2016;74:295–302.CrossRefGoogle Scholar
  19. 19.
    Bae JM, Lee JH, Yun JS, et al. Vitiligo and overt thyroid diseases: a nationwide population-based study in Korea. J Am Acad Dermatol. 2017;76:871.CrossRefGoogle Scholar
  20. 20.
    Gan EY, Cario-Andre M, Pain C, et al. Follicular vitiligo: a report of 8 cases. J Am Acad Dermatol. 2016;74:1178–84.CrossRefGoogle Scholar
  21. 21.
    Zhang Z, Xu SX, Zhang FY, et al. The analysis of genetics and associated autoimmune diseases in Chinese vitiligo patients. Arch Dermatol Res. 2009;301:167–73.CrossRefGoogle Scholar
  22. 22.
    Liston A, Enders A, Siggs OM. Unravelling the association of partial T-cell immunodeficiency and immune dysregulation. Nat Rev Immunol. 2008;8:545–58.CrossRefGoogle Scholar
  23. 23.
    Park MA, Li JT, Hagan JB, et al. Common variable immunodeficiency: a new look at an old disease. Lancet. 2008;372:489–502.CrossRefGoogle Scholar
  24. 24.
    Brown KL, Bylund J, MacDonald KL, et al. ROS-deficient monocytes have aberrant gene expression that correlates with inflammatory disorders of chronic granulomatous disease. Clin Immunol. 2008;129:90–102.CrossRefGoogle Scholar
  25. 25.
    Duvic M, Rapini R, Hoots WK, et al. Human immunodeficiency virus-associated vitiligo: expression of autoimmunity with immunodeficiency? J Am Acad Dermatol. 1987;17:656–62.CrossRefGoogle Scholar
  26. 26.
    Grandhe NP, Dogra S, Kumar B. Spontaneous repigmentation of vitiligo in an untreated HIV-positive patient. J Eur Acad Dermatol Venereol. 2006;20:234–5.CrossRefGoogle Scholar
  27. 27.
    Antony FC, Marsden RA. Vitiligo in association with human immunodeficiency virus infection. J Eur Acad Dermatol Venereol. 2003;17:456–8.CrossRefGoogle Scholar
  28. 28.
    Niamba P, Traoré A, Taieb A. Vitiligo sur peau noire associée au VIH et repigmentation lors du traitement antiretroviral. Ann Dermatol Venereol. 2007;134:272–3.CrossRefGoogle Scholar
  29. 29.
    Nikolic DS, Viero D, Tije VC, et al. Alopecia universalis associated with vitiligo in an 18-year-old HIV-positive patient: highly active anti-retroviral therapy as first choice therapy? Acta Derm Venereol. 2014;94:116–7.CrossRefGoogle Scholar
  30. 30.
    Yamauchi PS, Nguyen NQ, Grimes PE. Idiopathic CD4+ T-cell lymphocytopenia associated with vitiligo. J Am Acad Dermatol. 2002;46:779–82.CrossRefGoogle Scholar
  31. 31.
    Knight AK, Cunningham-Rundles C. Inflammatory and autoimmune complications of common variable immune deficiency. Autoimmun Rev. 2006;5:156–9.CrossRefGoogle Scholar
  32. 32.
    Westerhof W, d’Ischia M. Vitiligo puzzle: the pieces fall in place. Pigment Cell Res. 2007;20:345–59.PubMedGoogle Scholar
  33. 33.
    Onay H, Pehlivan M, Alper S, et al. Might there be a link between mannose binding lectin and vitiligo? Eur J Dermatol. 2007;17:146–8.PubMedGoogle Scholar
  34. 34.
    Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38:441–6.CrossRefGoogle Scholar
  35. 35.
    Blumen SC, Bevan S, Abu-Mouch S, et al. A locus for complicated hereditary spastic paraplegia maps to chromosome 1q24-q32. Ann Neurol. 2003;54:796–803.CrossRefGoogle Scholar
  36. 36.
    Kulkarni ML, Baskar K, Kulkarni PM. A syndrome of immunodeficiency, autoimmunity, and spondylometaphyseal dysplasia. Am J Med Genet A. 2007;143:69–75.CrossRefGoogle Scholar
  37. 37.
    Taieb A. Intrinsic and extrinsic pathomechanisms in vitiligo. Pigment Cell Res. 2000;13:41–7.CrossRefGoogle Scholar
  38. 38.
    Richards KA, Fukai K, Oiso N, et al. A novel KIT mutation results in piebaldism with progressive depigmentation. J Am Acad Dermatol. 2001;44:288–92.CrossRefGoogle Scholar
  39. 39.
    Alkhateeb A, Fain PR, Spritz RA. Candidate functional promoter variant in the FOXD3 melanoblast developmental regulator gene in autosomal dominant vitiligo. J Invest Derm. 2005;125:388–91.CrossRefGoogle Scholar
  40. 40.
    Husebye ES, Gebre-Medhin G, Tuomi TM, et al. Autoantibodies against aromatic l-amino acid decarboxylase in autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 1997;82:147–50.PubMedGoogle Scholar
  41. 41.
    Ekwall O, Hedstrand H, Haavik J, et al. Pteridin-dependent hydroxylases as autoantigens in autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 2000;85:2944–50.PubMedGoogle Scholar
  42. 42.
    Betterle C, Dal Pra C, Mantero F, Zanchetta R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev. 2002;23:327–64.CrossRefGoogle Scholar
  43. 43.
    Alimohammadi M, Björklund P, Hallgren A, et al. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N Engl J Med. 2008;358:1018–28.CrossRefGoogle Scholar
  44. 44.
    Taieb A. NALP1 and the inflammasomes: challenging our perception of vitiligo and vitiligo-related autoimmune disorders. Pigment Cell Res. 2007;20:260–2.CrossRefGoogle Scholar
  45. 45.
    Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, Fain PR, Spritz RA. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356:1216–25.CrossRefGoogle Scholar
  46. 46.
    Heuss D, Engelhardt A, Gobel H, et al. Myopathological findings in interstitial myositis in type II polyendocrine autoimmune syndrome (Schmidt’s syndrome). Neurol Res. 1995;17:233–7.CrossRefGoogle Scholar
  47. 47.
    Eisenbarth GS, Wilson PW, Ward F, et al. The polyglandular failure syndrome: disease inheritance, HLA type, and immune function: studies in patients and families. Ann Intern Med. 1978;91:528–33.CrossRefGoogle Scholar
  48. 48.
    Zeviani M, Muntoni F, Savarese N, et al. A MERRF/MELAS overlap syndrome associated with a new point mutation in the mitochondrial DNA tRNA(Lys) gene. Eur J Hum Genet. 1993;1:80–7.CrossRefGoogle Scholar
  49. 49.
    Latkany P, Ciulla TA, Cacchillo PF, et al. Mitochondrial maculopathy: geographic atrophy of the macula in the MELAS associated A to G 3243 mitochondrial DNA point mutation. Am J Ophthalmol. 1999;128:112–4.CrossRefGoogle Scholar
  50. 50.
    Karvonen SL, Haapasaari KM, Kallioinen M, et al. Increased prevalence of vitiligo, but no evidence of premature ageing, in the skin of patients with bp 243 mutation in mitochondrial DNA in the mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome (MELAS). Br J Dermatol. 1999;140:634–9.CrossRefGoogle Scholar
  51. 51.
    Matsuoka T, Goto Y, Yoneda M, et al. Muscle histopathology in myoclonus epilepsy with ragged-red fibers (MERRF). J Neurol Sci. 1991;106:193–8.CrossRefGoogle Scholar
  52. 52.
    Berneburg M, Grether-Beck S, Kürten V, et al. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem. 1999;274:15345–9.CrossRefGoogle Scholar
  53. 53.
    Cohen LE, Tanner DJ, Schaefer HG, et al. Common and uncommon cutaneous findings in patients with ataxia-telangiectasia. J Am Acad Dermatol. 1984;10:431–8.CrossRefGoogle Scholar
  54. 54.
    Barlow C, Dennery PA, Shigenaga MK, et al. Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc Nat Acad Sci. 1999;96:9915–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Julien Seneschal
    • 1
    Email author
  • Fanny Morice-Picard
    • 1
  • Alain Taïeb
    • 1
  1. 1.Department of Dermatology and Pediatric DermatologyNational Reference Center for Rare Skin Diseases, Saint-André Hospital, University of BordeauxBordeauxFrance

Personalised recommendations