Skip to main content

Effects of Strain Rate on Mechanical Properties and Fracture Mechanisms in a Dual Phase Steel

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

Strain rate sensitivity of sheet steels affects their formability and crashworthiness. This contribution reports strain rate sensitivity and effects of strain rate on fracture micro-mechanisms in a commercial dual phase sheet steel (DP590). Uniaxial tensile tests were performed at strain rates of 10−4/s, 1/s and 3200/s to characterize effects of strain rate on ultimate tensile strength and ductility. Fracture surfaces of the tested specimens were quantitatively characterized using stereological techniques to understand the fracture micro-mechanisms. Obtained data indicates that the basic fracture micro-mechanism remains the same with respect to strain rate but strain partitioning in ferrite and martensite is a strong function of strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies, R.: Influence of martensite composition and content on the properties of dual phase steels. Metall. Trans. A. 9(5), 671–679 (1978)

    Article  Google Scholar 

  2. Rashid, M.: Dual phase steels. Annu. Rev. Mater. Sci. 11(1), 245–266 (1981)

    Article  Google Scholar 

  3. Tasan, C.C., et al.: An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annu. Rev. Mater. Res. 45, 391–431 (2015)

    Article  Google Scholar 

  4. Bag, A., Ray, K., Dwarakadasa, E.: Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall. Mater. Trans. A. 30(5), 1193–1202 (1999)

    Article  Google Scholar 

  5. Calcagnotto, M., et al.: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A. 527(10), 2738–2746 (2010)

    Article  Google Scholar 

  6. Colla, V., et al.: Strain hardening behavior of dual-phase steels. Metall. Mater. Trans. A. 40(11), 2557–2567 (2009)

    Article  Google Scholar 

  7. Avramovic-Cingara, G., et al.: Effect of martensite distribution on damage behaviour in DP600 dual phase steels. Mater. Sci. Eng. A. 516(1), 7–16 (2009)

    Article  Google Scholar 

  8. Avramovic-Cingara, G., et al.: Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall. Mater. Trans. A. 40(13), 3117 (2009)

    Article  Google Scholar 

  9. Granbom, Y.: Effects of process parameters prior to annealing on the formability of two cold rolled dual phase steels. Steel Res. Int. 79(4), 297–305 (2008)

    Article  Google Scholar 

  10. Kim, S., Lee, S.: Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. Metall. Mater. Trans. A. 31(7), 1753–1760 (2000)

    Article  Google Scholar 

  11. Ramazani, A., et al.: Characterization and modelling of failure initiation in DP steel. Comput. Mater. Sci. 75, 35–44 (2013)

    Article  Google Scholar 

  12. Zhao, Z., et al.: Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel. Mater. Sci. Eng. A. 618, 182–188 (2014)

    Article  Google Scholar 

  13. Curtze, S., et al.: Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates. Mater. Sci. Eng. A. 507(1), 124–131 (2009)

    Article  Google Scholar 

  14. Dong, D., et al.: Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding. Mater. Sci. Eng. A. 594, 17–25 (2014)

    Article  Google Scholar 

  15. Wang, W., et al.: Experimental study on high strain rate behavior of high strength 600–1000MPa dual phase steels and 1200MPa fully martensitic steels. Mater. Des. 47, 510–521 (2013)

    Article  Google Scholar 

  16. Sun, X., et al.: Effects of sample geometry and loading rate on tensile ductility of TRIP800 steel. Mater. Sci. Eng. A. 541, 1–7 (2012)

    Article  Google Scholar 

  17. Verleysen, P., et al.: Influence of specimen geometry on split Hopkinson tensile bar tests on sheet materials. Exp. Mech. 48(5), 587 (2008)

    Article  Google Scholar 

  18. Verleysen, P., et al.: Effect of strain rate on the forming behaviour of sheet metals. J. Mater. Process. Technol. 211(8), 1457–1464 (2011)

    Article  Google Scholar 

  19. Gokhale, A.M.: Estimation of length density Lv from vertical slices of unknown thickness. J. Microsc. 167(1), 1–8 (1992)

    Article  Google Scholar 

  20. Gokhale, A.M.: Quantitative Analysis of Fracture Surfaces Using Stereological Methods. Georgia Institute of Technology, Atlanta (1994)

    Google Scholar 

  21. Karlsson, L., Gokhale, A.: Stereological estimation of mean linear intercept length using the vertical sections and trisector methods. J. Microsc. 186(2), 143–152 (1997)

    Article  Google Scholar 

  22. Gundersen, H.J.G.: Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J. Microsc. 111(2), 219–223 (1977)

    Article  Google Scholar 

  23. Drury, W., Gokhale, A.M., Antolovich, S.: Effect of crack surface geometry on fatigue crack closure. Metall. Mater. Trans. A. 26(10), 2651–2663 (1995)

    Article  Google Scholar 

  24. Gokhale, A.M.: Quantitative characterization and representation of global microstructural geometry. Metallography and microstructures, ASM Handbook. ASM Int. 2004, 428–447 (2013)

    Google Scholar 

  25. Underwood, E.: In: Pellissier, G., Purdy, S. (eds.) The Mathematical Foundations of Quantitative Stereology, Stereology and Quantitative Metallography, STP36841S, pp. 3–38. ASTM International, West Conshohocken (1972.) https://doi.org/10.1520/STP36841S

    Chapter  Google Scholar 

  26. Jamwal, R.S.: Microstructural Origins of Variability in the Tensile Ductility of Dual Phase Steels. Georgia Institute of Technology, Atlanta (2011)

    Google Scholar 

  27. Sarwar, M., Priestner, R.: Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel. J. Mater. Sci. 31(8), 2091–2095 (1996)

    Article  Google Scholar 

  28. Kapoor, R., Nemat-Nasser, S.: Determination of temperature rise during high strain rate deformation. Mech. Mater. 27(1), 1–12 (1998)

    Article  Google Scholar 

  29. Mason, J., Rosakis, A., Ravichandran, G.: On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar. Mech. Mater. 17(2–3), 135–145 (1994)

    Article  Google Scholar 

  30. Rittel, D.: On the conversion of plastic work to heat during high strain rate deformation of glassy polymers. Mech. Mater. 31(2), 131–139 (1999)

    Article  Google Scholar 

  31. Yi, G., et al.: Response characteristics and adiabatic heating during high strain rate for trip steel and dp steel. J. Iron Steel Res. Int. 22(1), 48–54 (2015)

    Article  Google Scholar 

  32. Hutchinson, J., Neale, K.: Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metall. 25(8), 839–846 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded through an unrestricted research grant from ArcelorMittal Global R&D East Chicago to the Georgia Tech Foundation. The financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanya M. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, S.M. et al. (2018). Effects of Strain Rate on Mechanical Properties and Fracture Mechanisms in a Dual Phase Steel. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62956-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62956-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62955-1

  • Online ISBN: 978-3-319-62956-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics