Skip to main content

Strain Rate Sensitivity of Richtmyer-Meshkov Instability Experiments for Metal Strength

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

Recently, Richtmyer-Meshkov instabilities (RMI) have been used for studying strength at strain rates up to at least 107/s. RMI experiments involve shocking a metal interface with sinusoidal perturbations that invert and grow subsequent to shock and may arrest because of strength effects. To use RMI strength estimates as calibration data for rate-dependent constitutive models, one must understand the strain rates that apply to the strength estimate, but the strain rate varies spatially and temporally during the instability. In this study, we use a series of numerical simulations to establish the strain rate(s) to which the instability is most sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piriz, A.R., Cela, J.J.L., Tahir, N.A., Hoffmann, D.H.H.: Richtmyer-Meshkov instability in elastic-plastic media. Phys. Rev. E. 78(5), 056401 (2008)

    Article  Google Scholar 

  2. Piriz, A.R., Cela, J.J.L., Tahir, N.A.: Richtmyer–Meshkov instability as a tool for evaluating material strength under extreme conditions. Nucl. Inst. Methods A. 606(1), 139–141 (2009)

    Article  Google Scholar 

  3. Dimonte, G., Terrones, G., Cherne, F.J., Germann, T.C., Dupont, V., Kadau, K., Buttler, W.T., Oro, D.M., Morris, C., Preston, D.L.: Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities. Phys. Rev. Lett. 107(26), 264502 (2011)

    Article  Google Scholar 

  4. Buttler, W.T., Oró, D.M., Preston, D.L., Mikaelian, K.O., Cherne, F.J., Hixson, R.S., Mariam, F.G., Morris, C., Stone, J.B., Terrones, G., Tupa, D.: Unstable Richtmyer-Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech. 703, 60–84 (2012)

    Article  MATH  Google Scholar 

  5. López Ortega, A., Lombardini, M., Pullin, D.I., Meiron, D.I.: Numerical simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws. Phys. Rev. E. 89(3), 033018 (2014)

    Article  Google Scholar 

  6. Mikaelian, K.O.: Shock-induced interface instability in viscous fluids and metals. Phys. Rev. E. 87(3), 031003 (2013)

    Article  Google Scholar 

  7. Plohr, J.N., Plohr, B.J.: Linearized analysis of Richtmyer-Meshkov flow for elastic materials. J. Fluid Mech. 537, 55–89 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Prime, M.B., Vaughan, D.E., Preston, D.L., Buttler, W.T., Chen, S.R., Oró, D.M., Pack, C.: Using growth and arrest of Richtmyer-Meshkov instabilities and Lagrangian simulations to study high-rate material strength. J. Phys. Conf. Ser. 500(11), 112051 (2014)

    Article  Google Scholar 

  9. Opie, S., Gautam, S., Fortin, E., Lynch, J., Peralta, P., Loomis, E.: Behaviour of rippled shocks from ablatively-driven Richtmyer-Meshkov in metals accounting for strength. J. Phys. Conf. Ser. 717(1), 012075 (2016)

    Article  Google Scholar 

  10. John, K.K.: Strength of tantalum at high pressures through Richtmyer-Meshkov laser compression experiments and simulations. Ph.D. Dissertation, California Institute of Technology, Pasadena (2014)

    Google Scholar 

  11. Buttler, W.T., Gray III, G.T., Fensin, S.J., Grover, M., Prime, M.B., Stevens, G.D., Stone, J.B., Turley, W.D.: Yield strength of Cu and a CuPb alloy (1% Pb). AIP Conf. Proc. 1793(1), 110005 (2017). doi:10.1063/1.4971668

    Article  Google Scholar 

  12. Sternberger, Z., Maddox, B.R., Opachich, Y.P., Wehrenberg, C.E., Kraus, R.G., Remington, B.A., Randall, G.C., Farrell, M., Ravichandran, G.: A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum. AIP Conf. Proc. 1793(1), 110006 (2017). doi:10.1063/1.4971669

    Article  Google Scholar 

  13. Prime, M.B., Buttler, W.T., Buechler, M.A., Denissen, N.A., Kenamond, M.A., Mariam, F.G., Martinez, J.I., Oró, D.M., Schmidt, D.W., Stone, J.B., Tupa, D., Vogan-McNeil, W.: Estimation of metal strength at very high rates using free-surface Richtmyer-Meshkov instabilities. J. Dyn. Behav. Mater. 3(2), 189–202 (2017)

    Google Scholar 

  14. Preston, D.L., Tonks, D.L., Wallace, D.C.: Model of plastic deformation for extreme loading conditions. J. Appl. Phys. 93(1), 211–220 (2003)

    Article  Google Scholar 

  15. Simulia Abaqus 6.14: Dassault Systèmes, Vélizy-Villacoublay, France (2014)

    Google Scholar 

  16. Armstrong, R.W., Zerilli, F.J.: High rate straining of tantalum and copper. J. Phys. D Appl. Phys. 43(49), 492002 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Prime .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prime, M.B. (2018). Strain Rate Sensitivity of Richtmyer-Meshkov Instability Experiments for Metal Strength. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62956-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62956-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62955-1

  • Online ISBN: 978-3-319-62956-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics