Skip to main content

Effect of Pre-strain, Processing Conditions, and Impact Velocity on Energy Dissipation in Silicone Foams and Rubber

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

Silicone foams and rubber are used in a variety of applications to protect internal components from external shock impact. Understanding how these materials mitigate impact energy is a crucial step in designing more effective shock isolation systems for components. In this study, a Kolsky bar with pre-compression and passive radial confinement capabilities was used to investigate the response of silicone foams and rubber subjected to impact loading at different speeds. Using the preload capability, silicone foam samples were subjected to increasing levels of pre-strain. Frequency-based analyses were carried out on results from silicone foams and rubber to study the effect of both pre-strain and material processing conditions on the mechanism of energy dissipation in the frequency domain. Additionally, effects of impact speed on energy dissipation through silicone foams and rubber were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, C.Y., Yu, T.X.: Analytical models for shock isolation of typical components in portable electronics. Int. J. Impact Eng. 36, 1377–1384 (2009)

    Article  Google Scholar 

  2. Benning, C.J.: Effect of cell structures in polyethylene foam on shock mitigation. J. Cell. Plast. 5(1), 40–45 (1969)

    Article  Google Scholar 

Download references

Acknowledgment

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett Sanborn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanborn, B., Song, B. (2018). Effect of Pre-strain, Processing Conditions, and Impact Velocity on Energy Dissipation in Silicone Foams and Rubber. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62956-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62956-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62955-1

  • Online ISBN: 978-3-319-62956-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics