Skip to main content

Cost and Main Applications of Soluble CNTs

  • Chapter
  • First Online:

Abstract

In addition to such wide applications of soluble CNTs as biosensors [1–5], electrodes in biofuel cells [6], composites [7–11], advanced polymers [12–15], cements [16], agriculture [17], radar-absorbing materials [18], etc., mentioned throughout the text, we would like to underline the following uses. Soluble CNTs are applied mainly in nanomedicine [19] for different purposes, the most important of which is the drug delivery [20]. Within the family of nanomaterials, CNTs have emerged as a new alternative and efficient tool for transporting and translocating therapeutic molecules. It has become possible after the recent discovery of their capacity to penetrate into the cells. CNT can be loaded with active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Eguílaz, C.J. Venegas, A. Gutiérrez, Carbon nanotubes non-covalently functionalized with cytochrome c: A new bioanalytical platform for building bienzymatic biosensors. Microchem. J. 128, 161–165 (2016)

    Article  Google Scholar 

  2. S. Hou, A. Zhang, M. Su, Nanomaterials for biosensing applications. Nano 6, 58, 4 pp (2016)

    Google Scholar 

  3. M. Durga Prakash, S.R. Krishna Vanjari, C. Shekhar Sharma, S. Govind Singh, Ultrasensitive, label free, chemiresistive nanobiosensor using multiwalled carbon nanotubes embedded electrospun SU-8 nanofibers. Sensors 16, 1354, 15 pp (2016)

    Article  Google Scholar 

  4. G. Hughes, K. Westmacott, K.C. Honeychurch, A. Crew, R.M. Pemberton, J.P. Hart, Recent advances in the fabrication and application of screen-printed electrochemical (bio)sensors based on carbon materials for biomedical, agri-food and environmental analyses. Biosensors 6, 50, 39 pp (2016)

    Article  Google Scholar 

  5. X. Sun, Z. Gong, Y. Cao, X. Wang, Acetylcholinesterase biosensor based on poly(diallyldimethylammonium chloride)-multi-walled carbon nanotubes-graphene hybrid film. Nano Micro Lett 5(1), 47–56 (2013)

    Article  Google Scholar 

  6. B. Chan Kim, I. Lee, S.-J. Kwon, et al., Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells. Sci Rep 7, 40202 (2017)

    Article  Google Scholar 

  7. Z. Jiang, D. Chen, Y. Yu, J. Miao, Y. Liu, L. Zhang, Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/dissolved in ammonium/dimethyl sulfoxide mixed solvent. RSC Adv. 7, 2186–2192 (2017)

    Article  Google Scholar 

  8. J. Foldyna, V. Foldyna, M. Zelenák, Dispersion of carbon nanotubes for application in cement composites. Procedia Eng 149, 94–99 (2016)

    Article  Google Scholar 

  9. T. Jarolim, M. Labaj, R. Hela, K. Michnova, Carbon Nanotubes in Cementitious Composites: Dispersion, Implementation, and Influence on Mechanical Characteristics. Adv. Mater. Sci. Eng. 2016, Article ID 7508904, 6 pp (2016)

    Google Scholar 

  10. M.G. Raucci, M. Alvarez-Perez, D. Giugliano, S. Zeppetelli, L. Ambrosio, Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects. Regen Biomater. 3(1), 13–23 (2016)

    Article  Google Scholar 

  11. Y. Dror, W. Salalha, W. Pyckhout-Hintzen, et al., From carbon nanotube dispersion to composite nanofibers. Progr. Colloid Polym. Sci. 130, 64–69 (2005)

    Google Scholar 

  12. J.-S. Kim, G.-W. Kim, Hysteresis compensation of piezoresistive carbon nanotube/polydimethylsiloxane composite-based force sensors. Sensors 17, 229, 12 pp (2017)

    Article  Google Scholar 

  13. S.-H. Park, J. Bae. Polymer composite containing carbon nanotubes and their applications. Rec. Patents Nanotechn. 11(2), pp. 109–115 (2017), http://benthamscience.com/journals/recent-patents-on-nanotechnology; https://www.ncbi.nlm.nih.gov/pubmed/27978788; http://benthamscience.com/journals/recent-patents-on-nanotechnology/article/146781/

    Google Scholar 

  14. S. Boukheir, A. Len, J. Füzi, V. Kenderesi, Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites. J. Appl. Polym. Sci. 134(8), 44514 (2017)

    Article  Google Scholar 

  15. M. Shigeta, K. Kamiya, M. Uejima, S. Okada, Dispersion of carbon nanotubes in organic solvent by commercial polymers with ethylene chains: Experimental and theoretical studies. Jpn. J. Appl. Phys. 54, 035101 (2015)

    Article  Google Scholar 

  16. S.-H. Jang, S. Kawashima, H. Yin, Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes. Materials 9, 220, 11 pp (2016)

    Article  Google Scholar 

  17. A. Mukherjee, S. Majumdar, A.D. Servin, L. Pagano, O.P. Dhankher, J.C. White, Carbon nanomaterials in agriculture: A critical review. Front. Plant Sci. 7, article 172, 16 pp (2016)

    Google Scholar 

  18. B. Dong Che, L.-T.T. Nguyen, B. Quoc Nguyen, et al., Effects of carbon nanotube dispersion methods on the radar absorbing properties of MWCNT/epoxy nanocomposites. Macromol. Res. 22(11), 1221–1228 (2014)

    Article  Google Scholar 

  19. V.S.W. Chan, Nanomedicine: An unresolved regulatory issue. Regul. Toxicol. Pharmacol. 46(3), 218–224 (2006)

    Article  Google Scholar 

  20. Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular chemistry on water- soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1), 50–56 (2007)

    Article  Google Scholar 

  21. C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. BBA-Biomembranes 1758(3), 404–412 (2006)

    Article  Google Scholar 

  22. A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9(6), 674–679 (2005)

    Article  Google Scholar 

  23. K. Fu, W. Huang, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y.-P. Sun, Functionalization of carbon nanotubes with bovine serum albumin in homogeneous aqueous solution. J. Nanosci. Nanotechn. 2(5), 457–461 (2002)

    Article  Google Scholar 

  24. L.W. Zhang, L. Zeng, A.R. Barron, N.A. Monteiro-Riviere, Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int. J. Toxicology 26(2), 103–113 (2007)

    Article  Google Scholar 

  25. X. Dong, Z. Sun, X. Wang, D. Zhu, L. Liu, X. Leng, Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC. Drug Deliv. 24(1), 143–151 (2017)

    Article  Google Scholar 

  26. S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.-H. Kim, Carbon nanotubes: A novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46, 158–196 (2017)

    Article  Google Scholar 

  27. S. Sharma, N. Kumar Mehra, K. Jain, N. Kumar Jain, Effect of functionalization on drug delivery potential of carbon nanotubes. Art. Cells, Nanomed., Biotechn. 44(8), 1851–1860 (2016)

    Article  Google Scholar 

  28. P. Shantaram Uttekar, A. Malhari Kulkarni, P. Namdeorao Sable, P. Digambar Chaudhari, Surface modification of carbon nano tubes with nystatin for drug delivery applications. Indian J. Pharm. Edu. Res. 50(3), 385–390 (2016)

    Article  Google Scholar 

  29. T. Ohta, Y. Hashida, F. Yamashita, M. Hashida, Development of novel drug and Gene delivery carriers composed of single-walled carbon nanotubes and designed peptides with PEGylation. J. Pharm. Sci. 105(9), 2815–2824 (2016)

    Article  Google Scholar 

  30. M. Kawaguchi, T. Fukushima, T. Hayakawa, N. Nakashima, Y. Inoue, S. Takeda, K. Okamura, K. Taniguchi, Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dent. Mater. J. 25(4), 719–725 (2006)

    Article  Google Scholar 

  31. C.J. Gannon, P. Cherukuri, B.I. Yakobson, L. Cognet, J.S. Kanzius, C. Kittrell, B.R. Weisman, S.A. Curley, Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110(12), 2654–2665 (2007)

    Article  Google Scholar 

  32. R.P. Feazell, N. Nakayama-Ratchford, H. Dai, S.J. Lippard, Soluble single-walled carbon nanotubes as longboat delivery Systems for Platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129, 8438–8439 (2007)

    Article  Google Scholar 

  33. Y. Hwang, S.-H. Park, J. Woo Lee, Applications of functionalized carbon nanotubes for the therapy and diagnosis of cancer. Polymers 9, 13, 26 pp (2017)

    Article  Google Scholar 

  34. N.M. Bardhan, 30 years of advances in functionalization of carbon nanomaterials for biomedical applications: A practical review. (Annual Issue: Early career scholars in materials Science). J. Mater. Res. 32(1), 107–127 (2017)

    Article  Google Scholar 

  35. E. Heister, E.W. Brunner, G.R. Dieckmann, I. Jurewicz, A.B. Dalton, Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces 5(6), 1870–1891 (2013)

    Article  Google Scholar 

  36. I. Jesion, M. Skibniewski, E. Skibniewska, et al., Graphene and carbon nanocompounds: Biofunctionalization and applications in tissue engineering. Biotechnol. Biotechnol. Equip. 29(3), 415–422 (2015)

    Article  Google Scholar 

  37. R. Amezcua, A. Shirolkar, C. Fraze, D.A. Stout, Nanomaterials for cardiac myocyte tissue engineering. Nano 6, 133, 15 pp (2016)

    Google Scholar 

  38. J. Venkatesan, R. Ramjee Pallela, S.-K. Kim, Applications of carbon nanomaterials in bone tissue engineering. J. Biomed. Nanotechnol. 10, 3105–3123 (2014)

    Article  Google Scholar 

  39. N. Burblies, J. Schulze, H.-C. Schwarz, Coatings of different carbon nanotubes on platinum electrodes for neuronal devices: Preparation, cytocompatibility and interaction with spiral ganglion cells. PLoS One 11(7), e0158571 (2016)

    Article  Google Scholar 

  40. J.L. Hernandez-Lopez, E.R. Alvizo-Paez, S.E. Moya, J. Ruiz-Garcia, Ordered carbon nanotube thin films produced by the trapping of water-soluble single-wall carbon nanotubes at the air/water interface. Carbon 45(12), 2448–2450 (2007)

    Article  Google Scholar 

  41. J. Li, Y. Zhang, Large-scale aligned carbon nanotubes films. Physica E 33(1), 235–239 (2006)

    Article  Google Scholar 

  42. M.A. Hayat Nawaz, S. Rauf, et al., One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors 16, 1651, 15 pp (2016)

    Article  Google Scholar 

  43. F. Li, B. Tang, J. Xiu, S. Shufen Zhang, Hydrophilic modification of multi-walled carbon nanotube for building photonic crystals with enhanced color visibility and mechanical strength. Molecules 21, 547, 9 pp (2016)

    Article  Google Scholar 

  44. Meng, X., Liu, Y., Huang, M., Cao, J.-P. Flexible perfluoroalkoxy films filled with carbon nanotubes and their electric heating property. J. Appl. Polym. Sci., 2017, 134(18), 44782), 6 pp (2017)

    Google Scholar 

  45. A. Almowarai, Y. Ueno, Y. Show, Fabrication of CNT dispersion fluid by wet-jet milling method for coating on bipolar plate of fuel cell. J. Nanomater. 2015, Article ID 315017, 7 pp (2015)

    Google Scholar 

  46. A.G. Rozhin, Y. Sakakibara, M. Tokumoto, H. Kataura, Y. Achiba, Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film. Thin Solid Films 464, 368–372 (2004)

    Article  Google Scholar 

  47. K. Yu, Z. Zhu, M. Xu, Q. Li, W. Lu, Q. Chen, Soluble carbon nanotube films treated using a hydrogen plasma for uniform electron field emission. Surf. Coat. Technol. 179(1), 63–69 (2004)

    Article  Google Scholar 

  48. C. Hu, X. Chen, S. Hu, Water-soluble single-walled carbon nanotubes films: Preparation, characterization and applications as electrochemical sensing films. J. Electroanal. Chem. 586(1), 77–85 (2006)

    Article  Google Scholar 

  49. J. Zaumseil, Single-walled carbon nanotube networks for flexible and printed electronics. Semicond. Sci. Technol. 30, 074001, 20 pp (2015)

    Google Scholar 

  50. Kumar, S., Cola, B.A., Jackson, R., Graham, S. A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials. J. Electron. Packag., 2011, 133, 020906, 12 pp.

    Article  Google Scholar 

  51. S. Lawes, A. Riese, Q. Sun, N. Cheng, X. Sun, Printing nanostructured carbon for energy storage and conversion applications. Carbon 92, 150–176 (2015)

    Article  Google Scholar 

  52. M.A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M.L. Usrey, M.S. Strano, et al., Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett. 4(9), 1643–1647 (2004)

    Article  Google Scholar 

  53. G.S. Tulevski, J. Hannon, A. Afzali, Z. Chen, P. Avouris, C.R. Kagan, Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. J. Am. Chem. Soc. 129(39), 11964–11968 (2007)

    Article  Google Scholar 

  54. M.I.H. Panhuis, J. Wu, S.A. Ashraf, G.G. Wallace, Conducting textiles from single-walled carbon nanotubes. Synth. Met. 157(8), 358–362 (2007)

    Article  Google Scholar 

  55. Huang, X., Kobos, R. K., Xu, G. Hair coloring and cosmetic compositions comprising carbon nanotubes. US7276088, 2007

    Google Scholar 

  56. A.J. Miller, R.A. Hatton, S.R.P. Silva, Interpenetrating multiwall carbon nanotube electrodes for organic solar cells. Appl. Phys. Lett. 89, 133117 (2006)

    Article  Google Scholar 

  57. H.A. Alturaif, Z.A. ALOthman, J.G. Shapter, S.M. Wabaidur, Use of carbon nanotubes (CNTs) with polymers in solar cells. Molecules 19, 17329–17344 (2014)

    Article  Google Scholar 

  58. T. Grace, L.P. Yu, C. Gibson, et al., Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells. Nano 6, 52, 13 pp (2016)

    Google Scholar 

  59. C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta Biomembr. 1758(3), 404–412 (2006)

    Article  Google Scholar 

  60. https://sites.google.com/site/cntcomposites/cost-and-production. Accessed on May 8, 2017

  61. M. Bierdel, S. Buchholz, V. Michele, L. Mleczko, R. Rudolf, M. Voetz, A. Wolf, Phys. Status Solidi 244, 3939–3943 (2007)

    Article  Google Scholar 

  62. http://www.nano-lab.com/nanotubesuspensions.html. Accessed on May 8, 2017

  63. http://www.nanoamor.com/carbon_nanotube_dispersions. Accessed on May 8, 2017

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kharissova, O.V., Kharisov, B.I. (2017). Cost and Main Applications of Soluble CNTs. In: Solubilization and Dispersion of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-62950-6_6

Download citation

Publish with us

Policies and ethics