Skip to main content

Biological/Biochemical Methods

  • Chapter
  • First Online:
Solubilization and Dispersion of Carbon Nanotubes

Abstract

Soluble CNTs and especially water-soluble ones, functionalized with biomolecules, could get many applications in medicinal chemistry; that is why a host of efforts has been dedicated to CNT treatment with biologically active species, sugars, and their derivatives. Thus, as a first step before incorporation into poly(amide–imide) matrix, MWCNTs were modified with glucose and fructose (reaction scheme 4.1) carbohydrates as biomolecules to obtain Gl-MWCNTs and Fr-MWCNTs, leading to water-soluble and biocompatible products [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Mallakpour, V. Behranvand, Improved solubilization of multiwalled carbon nanotubes (MWCNTs) in water by surface functionalization with D-glucose and D-fructose: Properties comparison of functionalized MWCNTs/alanine-based poly(amide–imide) nanocomposites. High Perform. Polym. 28(8), 936–944 (2016)

    Article  Google Scholar 

  2. H. Leinonen, M. Pettersson, M. Lajunen, Water-soluble carbon nanotubes through sugar azide functionalization. Carbon 49(4), 1299–1304 (2011)

    Article  Google Scholar 

  3. A.A. Dyshin, O.V. Eliseeva, G.V. Bondarenko, M.G. Kiselev, Dissolution of single-walled carbon nanotubes in alkanol–cholic acid mixtures. Russ. J. Phys. Chem. A 89(9), 1628–1632 (2015)

    Article  Google Scholar 

  4. A.A. Dyshin, O.V. Eliseeva, G.V. Bondarenko, M. Kolker, G. Kiselev, Dispersion of single-walled carbon nanotubes in dimethylacetamide and a dimethylacetamide–cholic acid mixture. Russ. J. Phys. Chem. A 90(12), 2434–2439 (2016)

    Article  Google Scholar 

  5. C. Yao, C. Carlisi, Y. Li, D. Chen, J. Ding, Y.-L. Feng, Interaction potency of single-walled carbon nanotubes with DNAs: A novel assay for assessment of hazard risk. PLoS One 11(12), e0167796 (2016)

    Article  Google Scholar 

  6. M. Swierczewska, K.Y. Choi, E.L. Mertz, X. Huang, F. Zhang, L. Zhu, H.Y. Yoon, J.H. Park, A. Bhirde, S. Lee, X. Chen, A facile, one-step nanocarbon functionalization for biomedical applications. Nano Lett. 12(7), 3613–3620 (2012)

    Article  Google Scholar 

  7. F. Zhang, X. Chen, R.A. Boulos, F. Md Yasin, H. Lu, C. Raston, H. Zhang, Pyrene-conjugated hyaluronan facilitated exfoliation and stabilisation of low dimensional nanomaterials in water. Chem. Commun. 49(42), 4845–4847 (2013)

    Article  Google Scholar 

  8. S. Nagarajan, M.K. Dhinakaran, V.G. Kumar, N. Rajaram, T.M. Das, K.A. Padmanabhan, On the use of glycosylated single-walled carbon nanotubes as a coolant additive. Nanosci. Nanotechnol. Lett. 3(4), 477–482 (2011)

    Article  Google Scholar 

  9. L.T.N. Lien, T. Shiraki, A. Dawn, Y. Tsuchiya, D. Tokunaga, S.-I. Tamaru, N. Enomoto, J. Hojo, S. Shinkai, A pH-responsive carboxylic β-1,3-glucan polysaccharide for complexation with polymeric guests. Org. Biomol. Chem. 9(11), 4266–4275 (2011)

    Article  Google Scholar 

  10. M.K. Okajima, A. Kumar, A. Fujiwara, T. Mitsumata, D. Kaneko, T. Ogawa, H. Kurata, S. Isoda, T. Kaneko, Anionic complexes of MWCNT with supergiant cyanobacterial polyanions. Biopolymers 99(1), 1–9 (2013)

    Article  Google Scholar 

  11. H. Dohi, S. Kikuchi, S. Kuwahara, T. Sugai, H. Shinohara, Synthesis and spectroscopic characterization of single-wall carbon nanotubes wrapped by glycoconjugate polymer with bioactive sugars. Chem. Phys. Lett. 428(1), 98–101 (2006)

    Article  Google Scholar 

  12. L. Yan, P.R. Chang, P. Zheng, Preparation and characterization of starch-grafted multiwall carbon nanotube composites. Carbohydr. Polym. 84(4), 1378–1383 (2011)

    Article  Google Scholar 

  13. L. Li, W. Feng, P. Ji, Dispersion of carbon nanotubes in organic solvents initiated by hydrogen bonding interactions. AICHE J. 58(10), 2997–3002 (2012)

    Article  Google Scholar 

  14. M. Rinaudo, Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 31(7), 603–632 (2006)

    Article  Google Scholar 

  15. H. Yang, S.C. Wang, P. Mercier, D.L. Akins, Diameter-selective dispersion of single-walled carbon nanotubes using a water-soluble, biocompatible polymer. Chem. Commun. (13), 1425–1427 (2006)

    Google Scholar 

  16. D. Moura, J.F. Mano, M.C. Paiva, N.M. Alves, Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Sci. Technol. Adv. Mater. 17(1), 626–643 (2016)

    Article  Google Scholar 

  17. Y.-T. Shieh, H.-M. Wu, Y.-K. Twu, Y.-C. Chung, An investigation on dispersion of carbon nanotubes in chitosan aqueous solutions. Colloid Polym. Sci. 288(4), 377–385 (2010)

    Article  Google Scholar 

  18. C.K. Najeeb, J. Chang, J.-H. Lee, M. Lee, J.-H. Kim, Preparation of semiconductor-enriched single-walled carbon nanotube dispersion using a neutral pH water soluble chitosan derivative. J. Colloid Interface Sci. 354(2), 461–466 (2011)

    Article  Google Scholar 

  19. C.K. Najeeb, J.-H. Lee, J.-H. Kim, D. Kim, Highly efficient individual dispersion of single-walled carbon nanotubes using biocompatible dispersant. Colloids Surf. B Biointerfaces 102, 95–101 (2013)

    Article  Google Scholar 

  20. C. Tang, T. Zhou, J. Yang, Q. Zhang, F. Chen, Q. Fu, L. Yang, Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloids Surf. B Biointerfaces 86(1), 189–197 (2011)

    Article  Google Scholar 

  21. L. Qian, X. Yang, Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta 68(3), 721–727 (2006)

    Article  Google Scholar 

  22. Y. Liu, X. Qu, H. Guo, H. Chen, B. Liu, S. Dong, Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosens. Bioelectron. 21(12), 2195–2201 (2006)

    Article  Google Scholar 

  23. G.M. Spinks, S.R. Shin, G.G. Wallace, P.G. Whitten, S.I. Kim, S.J. Kim, Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sensors Actuators B Chem 115(2), 678–684 (2006)

    Article  Google Scholar 

  24. A.L. Ahmad, Z.A. Jawad, S.C. Low, S.H. Sharif Zein, The functionalization of beta-cyclodextrins on multi walled carbon nanotubes: Effects of the dispersant and non aqueous media. Curr. Nanosci. 9(1), 93–102 (2013)

    Google Scholar 

  25. V.I. Bhoi, T. Imae, M. Ujihara, C.N. Murthy, Surface immobilization of carbon nanotubes by β-cyclodextrins and their inclusion ability. J. Nanosci. Nanotechnol. 13(4), 2604–2612 (2013)

    Article  Google Scholar 

  26. J.-G. Yu, K.-L. Huang, S.-Q. Liu, J.-C. Tang, Preparation and characterization of soluble methyl-β-cyclodextrin functionalized single-walled carbon nanotubes. Phys. E. 40(3), 689–692 (2008)

    Article  Google Scholar 

  27. A. Casey, G.F. Farrell, M. McNamara, H.J. Byrne, G. Chambers, Interaction of carbon nanotubes with sugar complexes. Synth. Met. 153(1), 357–360 (2005)

    Article  Google Scholar 

  28. A. Feng, L. Peng, B. Liu, S. Liu, S. Wang, J. Yuan, Electrochemical redox switchable dispersion of single-walled carbon nanotubes in water. ACS Appl. Mater. Interfaces 8(17), 11024–11030 (2016)

    Article  Google Scholar 

  29. H. Lu, L. Zou, Y. Wei, et al., The preparation of lysine modified multi-walled carbon nanotubes and the study of its dispersion properties. IOP Conf. Series Mater. Sci. Eng 87, 012048 (2015)

    Article  Google Scholar 

  30. A. Amiri, H.Z. Zardini, M. Shanbedi, M. Maghrebi, M. Baniadam, B. Tolueinia, Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Mater. Lett. 72, 153–156 (2012)

    Article  Google Scholar 

  31. T. Zhang, L. Zou, X. Ling, X. Li, Dispersion of multi-walled carbon nanotubes modified with poly-L-lysine in water. Appl. Mech. Mater. 275-277, 1785–1788 (2013)

    Article  Google Scholar 

  32. A. Ansun-Casaos, L. Grasa, D. Pereboom, et al., In-vitro toxicity of carbon nanotube/polylysine colloids to colon cancer cells. IET Nanobiotechnol. 10(6), 374–381 (2016)

    Article  Google Scholar 

  33. Z. Li, T. Kameda, T. Isoshima, et al., Solubilization of single-walled carbon nanotubes using a peptide aptamer in water below the critical micelle concentration. Langmuir 31(11), 3482–3488 (2015)

    Article  Google Scholar 

  34. D. Pantarotto, C.D. Partidos, R. Graff, J. Hoebeke, J.-P. Briand, M. Prato, A. Bianco, Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125(20), 6160–6164 (2003)

    Article  Google Scholar 

  35. Y. Cheng, G.R. Liu, Z.R. Li, C. Lu, Computational analysis of binding free energies between peptides and single-walled carbon nanotubes. Physica A Stat. Mech. Appl. 367, 293–304 (2006)

    Article  Google Scholar 

  36. Y. Hashida, T. Umeyama, J. Mihara, H. Imahori, M. Tsujimoto, S. Isoda, M. Takano, M. Hashida, Development of a novel composite material with carbon nanotubes assisted by self-assembled peptides designed in conjunction with β-sheet formation. J. Pharm. Sci. 101(9), 3398–3412 (2012)

    Article  Google Scholar 

  37. M. Sheikholeslam, M. Pritzker, P. Chen, Dispersion of multiwalled carbon nanotubes in water using ionic-complementary peptides. Langmuir 28(34), 12550–12556 (2012)

    Article  Google Scholar 

  38. S. Dutta, T. Kar, S. Brahmachari, P.K. Das, pH-responsive reversible dispersion of biocompatible SWCNT/graphene- amphiphile hybrids. J. Mater. Chem. 22(14), 6623–6631 (2012)

    Article  Google Scholar 

  39. Z. Li, T. Kameda, T. Isoshima, E. Kobatake, T. Tanaka, Y. Ito, M. Kawamoto, Solubilization of single-walled carbon nanotubes using a peptide aptamer in water below the critical micelle concentration. Langmuir 31, 3482−3488 (2015)

    Google Scholar 

  40. M. Ghosh, S. Brahmachari, P. Kumar Das, pH-responsive single walled carbon nanotube dispersion for target specific release of doxorubicin to cancer cells. Macromol. Biosci. 14, 1795–1806 (2014)

    Article  Google Scholar 

  41. J. Posseckardt, J. Zhang, M. Mertig, Mobility of a supported lipid bilayer on dispersed single-walled carbon nanotubes. Phys. Status Solidi A 213(6), 1427–1433 (2016)

    Article  Google Scholar 

  42. J. Maättä, S. Vierros, P.R. Van Tassel, M. Sammalkorpi, Size-selective, noncovalent dispersion of carbon nanotubes by PEGylated lipids: A coarse-grained molecular dynamics study. J. Chem. Eng. Data 59, 3080−3089 (2014)

    Article  Google Scholar 

  43. E. Cheng, Y. Yang, D. Liu, pH-controlled carbon nanotube aggregation/dispersion based on intermolecular I-motif DNA formation. J. Nanosci. Nanotechnol. 10(11), 7282–7286 (2010)

    Article  Google Scholar 

  44. A. Amiri, M. Shanbedi, H. Eshghi, S.Z. Heris, M. Baniadam, Highly dispersed multiwalled carbon nanotubes decorated with ag nanoparticles in water and experimental investigation of the thermophysical properties. J. Phys. Chem. C 116(5), 3369–3375 (2012)

    Article  Google Scholar 

  45. P.R. Dalmasso, M.L. Pedano, G.A. Rivas, Dispersion of multi-wall carbon nanotubes in polyhistidine: Characterization and analytical applications. Anal. Chim. Acta 710, 58–64 (2012)

    Article  Google Scholar 

  46. K. Umemura, K. Izumi, S. Oura, Probe microscopic studies of DNA molecules on carbon nanotubes. Nano 6, 180 (2016.) 14 pp

    Google Scholar 

  47. S. Daniel, T.P. Rao, K.S. Rao, S.U. Rani, G.R.K. Naidu, H.Y. Lee, T. Kawai, A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sensors Actuators B Chem. 122(2), 672–682 (2007)

    Article  Google Scholar 

  48. R.M. Williams, S. Nayeem, B.D. Dolash, L.J. Sooter, The effect of DNA-dispersed single-walled carbon nanotubes on the polymerase chain reaction. PLoS One 9(4), e94117 (2014)

    Article  Google Scholar 

  49. E.N. Primo, P. Cañete-Rosales, S. Bollo, M.D. Rubianes, G.A. Rivas, Dispersion of bamboo type multi-wall carbon nanotubes in calf-thymus double stranded DNA. Colloids Surf. B Biointerfaces 108, 329–336 (2013)

    Article  Google Scholar 

  50. F. Bomboi, A. Bonincontro, C. La Mesa, F. Tardani, Interactions between single-walled carbon nanotubes and lysozyme. J. Colloid Interface Sci. 355(2), 342–347 (2011)

    Article  Google Scholar 

  51. D. Nepal, J.-I. Sohn, W.K. Aicher, S. Lee, K. Geckeler, Supramolecular conjugates of carbon nanotubes and DNA by a solid-state reaction. Biomacromolecules 6(6), 2919–2922 (2005)

    Article  Google Scholar 

  52. P. He, M. Bayachou, Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles. Langmuir 21(13), 6086–6092 (2005)

    Article  Google Scholar 

  53. A. Ishibashi, Y. Yamaguchi, H. Murakami, N. Nakashima, Layer-by-layer assembly of RNA/single-walled carbon nanotube nanocomposites. Chem. Phys. Lett. 419(4), 574–577 (2006)

    Article  Google Scholar 

  54. Q.H. Yang, N. Gale, C.J. Oton, H. Li, I.S. Nandhakumar, Z.Y. Tang, T. Brown, W.H. Loh, Deuterated water as super solvent for short carbon nanotubes wrapped by DNA. Carbon 45(13), 2701–2703 (2007)

    Article  Google Scholar 

  55. A. Bianco, D. Pantarotto, K. Kostarelos, M. Prato. Non-covalent complexes comprising carbon nanotubes. WO05121799, 2005

    Google Scholar 

  56. N. Nakashima, S. Okuzono, H. Murakami, T. Nakai, K. Yoshikawa, DNA dissolves single-walled carbon nanotubes in water. Chem. Lett. 32, 456–457 (2003)

    Article  Google Scholar 

  57. M. Zheng, A. Jagota, D.S. Ellen, A.D. Bruce, S.M. Robert, R.L. Steve, E.R. Raymond, G.T. Nancy, DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003)

    Article  Google Scholar 

  58. Y. Noguchi, T. Fujigaya, Y. Niidome, N. Nakashima, Single-walled carbon nanotubes/DNA hybrids in water are highly stable. Chem. Phys. Lett. 455, 249–251 (2008)

    Article  Google Scholar 

  59. B. Koh, W. Cheng, The kinetics of single-walled carbon nanotube aggregation in aqueous media is sensitive to surface charge. C (J. Carbon Res) 2(6), 11 (2016)

    Google Scholar 

  60. V. Georgakilas, N. Tagmatarchis, D. Pantarotto, A. Bianco, J.-P. Briand, M. Prato, Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. (24), 3050–3051 (2002)

    Google Scholar 

  61. S. Mallakpour, A. Zadehnazari, Functionalization of multiwalled carbon nanotubes with S-valine amino acid and its reinforcement on amino acid-containing poly(amide-imide) bionanocomposites. High Perform. Polym 25(8), 966–979 (2013)

    Article  Google Scholar 

  62. L. Zeng, L. Zhang, A.R. Barron, Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide pH range through substituent chain length. Nano Lett. 5(10), 2001–2004 (2005)

    Article  Google Scholar 

  63. N. Hu, G. Dang, H. Zhou, J. Jing, C. Chen, Efficient direct water dispersion of multi-walled carbon nanotubes by functionalization with lysine. Mater. Lett. 61(30), 5285–5287 (2007)

    Article  Google Scholar 

  64. S. Mallakpour, A. Zadehnazari, Functionalization of multi-wall carbon nanotubes with amino acid and its influence on the properties of thiadiazol bearing poly(amide-thioester-imide) composites. Synth. Met. 169, 1), 1–1),11 (2013)

    Article  Google Scholar 

  65. M. Kojima, T. Chiba, J. Niishima, T. Higashi, T. Fukuda, Y. Nakajima, S. Kurosu, T. Hanajiri, K. Ishii, T. Maekawa, A. Inoue, Dispersion of single-walled carbon nanotubes modified with poly-l-tyrosine in water. Nanoscale Res. Lett. 6(1), X1–X6 (2011)

    Article  Google Scholar 

  66. S. Brahmachari, D. Das, P.K. Das, Superior SWCNT dispersion by amino acid based amphiphiles: Designing biocompatible cationic nanohybrids. Chem. Commun. 46(44), 8386–8388 (2010)

    Article  Google Scholar 

  67. B.G. Cousins, A.K. Das, R. Sharma, Y. Li, J.P. McNamara, I.H. Hillier, I.A. Kinloch, R.V. Ulijn, Enzyme-activated surfactants for dispersion of carbon nanotubes. Small 5(5), 587–590 (2009)

    Article  Google Scholar 

  68. N.R. Tummala, B.H. Morrow, D.E. Resasco, A. Striolo, Stabilization of aqueous carbon nanotube dispersions using surfactants: Insights from molecular dynamics simulations. ACS Nano 4(12), 7193–7204 (2010)

    Article  Google Scholar 

  69. M. Jang, S. Kim, H. Jeong, S.-Y. Ju, Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation. Nanotechnology 27, 41LT01 (2016.) (6 pp)

    Article  Google Scholar 

  70. A. Ikeda, T. Hamano, K. Hayashi, Jun-IchiKikuchi, Water-solubilization of nucleotides-coated single-walled carbon nanotubes using a high-speed vibration milling technique. Org. Lett. 8(6), 1153–1156 (2006)

    Article  Google Scholar 

  71. Y.H. Xie, A.K. Soh, Investigation of non-covalent association of single-walled carbon nanotube with amylose by molecular dynamics simulation. Mater. Lett. 59(8), 971–975 (2005)

    Article  Google Scholar 

  72. A.E. Frise, E. Edri, I. Furó, O. Regev, Protein dispersant binding on nanotubes studied by NMR self-diffusion and cryo-TEM techniques. J. Phys. Chem. Lett. 1(9), 1414–1419 (2010)

    Article  Google Scholar 

  73. X. Wang, H. Wang, Y. Huang, Z. Zhao, X. Qin, Y. Wang, Z. Miao, Q. Chen, M. Qiao, Noncovalently functionalized multi-wall carbon nanotubes in aqueous solution using the hydrophobin HFBI and their electroanalytical application. Biosens. Bioelectron. 26(3), 1104–1108 (2010)

    Article  Google Scholar 

  74. M.C. Kum, K.A. Joshi, W. Chen, N.V. Myung, A. Mulchandani, Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application. Talanta 74(3), 370–375 (2007)

    Article  Google Scholar 

  75. O.M. Burlaka, Y.V. Pirko, O.F. Kolomys, et al., Functionalization of carbon nanotubes by different biomolecules for stable dispersion in water. Biotechnol. Acta 8(4), 71–81 (2015)

    Article  Google Scholar 

  76. C. Kuroda, H. Haniu, K. Ajima, et al., The dispersion state of tangled multi-walled carbon nanotubes affects their cytotoxicity. Nano 6(219), 10 (2016)

    Google Scholar 

  77. M. Eguílaz, C.J. Venegas, A. Gutiérrez, Carbon nanotubes non-covalently functionalized with cytochrome c: A new bioanalytical platform for building bienzymatic biosensors. Microchem. J. 128, 161–165 (2016)

    Article  Google Scholar 

  78. G. Risuleo, C. La Mesa, Dispersability of carbon nanotubes in biopolymer-based fluids and their potential biotechnological applications. Trends Nanotechnol. Mater. Sci 1(2), 7 (2016)

    Google Scholar 

  79. G. Ke, W. Guan, C. Tang, W. Guan, D. Zeng, F. Deng, Covalent functionalization of multiwalled carbon nanotubes with a low molecular weight chitosan. Biomacromolecules 8(2), 322–326 (2007)

    Article  Google Scholar 

  80. B.Z. Yu, J.S. Yang, W.X. Li, In vitro capability of multi-walled carbon nanotubes modified with gonadotrophin releasing hormone on killing cancer cells. Carbon 45(10), 1921–1927 (2007)

    Article  Google Scholar 

  81. R. Prakash, R. Superfine, S. Washburn, M.R. Falvo, Functionalization of carbon nanotubes with proteins and quantum dots in aqueous buffer solutions. Appl. Phys. Lett. 88, 063102 (2006)

    Article  Google Scholar 

  82. Z. Xu, P. Hu, S. Wang, X. Wang, Biological functionalization and fluorescent imaging of carbon nanotubes. Appl. Surf. Sci. 254(7), 1915–1918 (2008)

    Article  Google Scholar 

  83. D. Pantarotto, C.D. Partidos, J. Hoebeke, F. Brown, E. Kramer, J.-P. Briand, S. Muller, A. Bianco, Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10(10), 961–966 (2003)

    Article  Google Scholar 

  84. A. Bianco, D. Pantarotto, M. Prato Functionalized carbon nanotubes, a process for preparing the same and their use in medicinal chemistry. WO04089819, (2004)

    Google Scholar 

  85. P.-C. Ke, Y. Wu, A.M. Rao. Lysophospholipids solubilized single-walled carbon nanotubes. WO07136404, 2007

    Google Scholar 

  86. H. Dai, R.J. Chen. Noncovalent sidewall functionalization of carbon nanotubes. US20050100960, 2005

    Google Scholar 

  87. P.G. Holder, M.B. Francis, Integration of a self-assembling protein scaffold with water-soluble single-walled carbon nanotubes. Angew. Chem. Int. Ed. Engl. 46(23), 4370–4373 (2007)

    Article  Google Scholar 

  88. M.C. Buford, R.F. Hamilton, A. Holan, A comparison of dispersing media for various engineered carbon nanoparticles. Part. Fibre Toxicol. 4(1), 6 (2007)

    Article  Google Scholar 

  89. P. Asuri, S.S. Karajanagi, E. Sellitto, D.-Y. Kim, R.S. Kane, J.S. Dordick, Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol. Bioeng. 95(5), 804–811 (2006)

    Article  Google Scholar 

  90. P. Asuri, S.S. Bale, R.C. Pangule, D.A. Shah, R.S. Kane, J.S. Dordick, Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 23(24), 12318–12321 (2007)

    Article  Google Scholar 

  91. B.C. Kim, I. Lee, S.-J. Kwon, et al., Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells. Sci Rep 7, Article number: 40202 (2017)

    Article  Google Scholar 

  92. M.i.h. Panhuis, C. Salvador-Morales, E. Franklin, G. Chambers, A. Fonseca, J.B. Nagy, W.J. Blau, A. Minett, Characterization of an interaction between functionalized carbon nanotubes and an enzyme. J. Nanosci. Nanotechnol. 3(3), 209–213 (2003)

    Article  Google Scholar 

  93. J. Li, Y.-B. Wang, J.-D. Qiu, D.-C. Sun, X.-H. Xia, Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor. Anal. Bioanal. Chem. 383(6), 918–922 (2005)

    Article  Google Scholar 

  94. Y. Wang, Z. Iqbal, S.V. Malhotra, Functionalization of carbon nanotubes with amines and enzymes. Chem. Phys. Lett. 402(1), 96–101 (2005)

    Article  Google Scholar 

  95. M. Chen, X. Qin, G. Zeng, Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotechnol. (2017.) in press

    Google Scholar 

  96. M. Khazaee, A. Majumder, L. Baraban, G. Cuniberti, J. Opitz, D. Ye, Non-covalent modified multi-walled carbon nanotubes: Dispersion capabilities and interactions with bacteria. Biomed. Phys. Eng. Express 2(5), 8 (2016.) Art. 055008

    Article  Google Scholar 

  97. L. Valentini, S. Bittolo Bon, S. Signetti, M. Tripathi, E. Lacob, N.M. Pugnob, Fermentation based carbon nanotube multifunctional bionic composites. Sci Rep 6, 27031 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kharissova, O.V., Kharisov, B.I. (2017). Biological/Biochemical Methods. In: Solubilization and Dispersion of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-62950-6_4

Download citation

Publish with us

Policies and ethics