Skip to main content

Abstract

The carbon nanotubes (CNTs), one of the best novel nanostructures [1] and classic objects in nanotechnology, form bundle-like structures with very complex morphologies with a high number of Van der Waals interactions, causing extremely poor solubility in water or organic solvents. Due to their exceptional combination of mechanical, thermal, chemical, and electronic properties, single-walled (SWNTs or SWCNTs) and multiwalled carbon nanotubes (MWNTs or MWCNTs) are considered as unique materials, with very promising future applications, especially in the field of nanotechnology, nanoelectronics, and composite materials. Additionally, CNTs are becoming highly attractive molecules for applications in medicinal chemistry. At present, potential biological and medical applications [2] of CNTs have been little explored, in particular for drug delivery purposes [3]. The main difficulty to integrate such materials into biological systems derives from their lack of solubility in physiological solutions. Functionalization of CNTs with the assistance of biological molecules remarkably improves the solubility of nanotubes in aqueous or organic environment and, thus, facilitates the development of novel biotechnology, biomedicine, and bioengineering. Many of these applications require an increased “solubility” of CNTs in solvents, first of all in water, especially for biological applications. This could be reached by their functionalization, which is a very actively discussed topic in contemporary literature because the planned modification of CNT properties is believed to open the road toward real nanotechnology applications [4]. It is difficult to prepare an aqueous dispersion of CNTs stable for months; their insolubility has been a limitation for the practical applications of this unique material. Proper dispersion of CNT materials is important to retaining the electronic properties of nanotubes. The redissoluble functional compound/CNT composites are needed for post-processing because CNT dispersions usually easily aggregate and therefore make additional processing very difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Rashad, R. Noaman, S.A. Mohammed, E. Yousif, Synthesis of carbon nanotube: A review. J. Nanosci. Technol 2(3), 155–162 (2016)

    Google Scholar 

  2. N. Bhandare, A. Narayana, Applications of nanotechnology in cancer: A literature review of imaging and treatment. Nuclear medicine & radiation therapy. J. Nucl. Med. Radiat. Ther 5, 4 (2014.) 9 pp

    Google Scholar 

  3. A.C. Tripathi, S.A. Saraf, S.K. Saraf, Carbon nanotropes: A contemporary paradigm in drug delivery. Materials 8, 3068–3100 (2015)

    Article  Google Scholar 

  4. H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger, T. Pichler, Functionalization of carbon nanotubes. Synth. Met. 141(1), 113–122 (2004)

    Article  Google Scholar 

  5. F. Liang, E.W. Billups. Water-soluble single-wall carbon nanotubes as a platform technology for biomedical applications. US20070110658, 2007

    Google Scholar 

  6. J.M. Tour, J.L. Hudson, C. Dyke, J.J. Stephenson Functionalization of carbon nanotubes in acidic media. WO05113434, 2005

    Google Scholar 

  7. T. Premkumar, R. Mezzenga, K.E. Geckeler, Carbon nanotubes in the liquid phase: Addressing the issue of dispersion. Small 8(9), 1299–1313 (2012)

    Article  Google Scholar 

  8. K.E. Geckeler, T. Premkumar, Carbon nanotubes: Are they dispersed or dissolved in liquids? Nanoscale Res. Lett. 6(1), X1–X3 (2011)

    Article  Google Scholar 

  9. M.J. Green, Analysis and measurement of carbon nanotube dispersions: Nanodispersion versus macrodispersion. Polym. Int. 59(10), 1319–1322 (2010)

    Article  Google Scholar 

  10. J. Hilding, E.A. Grulke, Z.G. Zhang, F. Lockwood, Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 24(1), 1–41 (2003)

    Article  Google Scholar 

  11. C. Backes. Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water. Springer Theses, (2016) pp. 220

    Google Scholar 

  12. M. Wiesner, J.-Y. Bottero, Environmental Nanotechnology (McGraw-Hill Professional, Blacklick, 2007), p. 540

    Google Scholar 

  13. K. Gonsalves, C. Halberstadt, C.T. Laurencin, L. Nair, Biomedical Nanostructures (Wiley, New York, 2007), p. 507

    Book  Google Scholar 

  14. S.-K. Choi, Synthetic Multivalent Molecules: Concepts and Biomedical Applications (Wiley-Interscience, Hoboken, 2004), p. 418

    Book  Google Scholar 

  15. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, 2004), p. 224

    Google Scholar 

  16. A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin/Heidelberg, 2008), p. 720

    Book  Google Scholar 

  17. Y. Maeda, M. Yamada, T. Hasegawa, T. Akasaka, J. Lu, S. Nagase, Interaction of single-walled carbon nanotubes with amine. Nano 7(1), art. no. 1130001 (2012)

    Article  Google Scholar 

  18. Y.Y. Huang, E.M. Terentjev, Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymer 4, 275–295 (2012)

    Article  Google Scholar 

  19. J. Labille, J. Brant, Stability of nanoparticles in water. Nanomedicine 5(6), 985–998 (2010)

    Article  Google Scholar 

  20. A. Di Crescenzo, V. Ettorre, A. Fontana, Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J. Nanotechnol. 5, 1675–1690 (2014)

    Article  Google Scholar 

  21. X. Xin, G. Xu, H. Li, Dispersion and property manipulation of carbon nanotubes by self-assemibles of amphiphilic molecules, in Physical and Chemical Properties of Carbon Nanotubes, (INTECH, Rijeka, Croatia, 2013), pp. 255–273

    Google Scholar 

  22. M. Sanchez-Dominguez, C. Rodriguez-Abreu (eds.), Nanocolloids: A Meeting Point for Scientists and Technologists, 1st edn. (Elsevier, Amsterdam, The Netherlands, 2016), p. 536

    Google Scholar 

  23. G. Babatunde Olowojoba, P. Fraunhofer, Assessment of Dispersion Evolution of Carbon Nanotubes in Shear-Mixed Epoxy Suspensions by Interfacial Polarization Measurement (Fraunhofer Verlag, Stuttgart, 2013), p. 128

    Google Scholar 

  24. S. Won Kim et al., Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50, 3–33 (2012)

    Article  Google Scholar 

  25. H. Li, Q. Li. Selective separation of single-walled carbon nanotubes in solution hongbo. in Electronic Properties of Carbon Nanotubes, ed. by J. M. Marulanda, (INTECH, Rijeka, 2011), pp. 69–91, ISBN: 978-953-307-499-3, Available from: http://www.intechopen.com/books/electronic-properties-of-carbon-nanotubes/selectiveseparation-of-single-walled-carbon-nanotubes-in-solution

  26. S. Prakash Yadav, S. Singh, Carbon nanotube dispersion in nematic liquid crystals: An overview. Prog. Mater. Sci. 80, 38–76 (2016)

    Article  Google Scholar 

  27. J. Njuguna, O. Arda Vanli, R. Liang, A review of spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J. Spectrosc. 2015, 11 (2015.) Article ID 463156

    Article  Google Scholar 

  28. M. Hiroto, N. Naotoshi, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechnol. 6(1), 16–27 (2006)

    Google Scholar 

  29. D. Tasis, N. Tagmatarchis, V. Georgakilas, M. Prato, Soluble carbon nanotubes. Chemistry 9(17), 4000–4008 (2003)

    Article  Google Scholar 

  30. N. Nakashima, T. Fujigaya, Fundamentals and applications of soluble carbon nanotubes. Chem. Lett. 36(6), 692 (2007)

    Article  Google Scholar 

  31. L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev. 58(14), 1460–1470 (2006)

    Article  Google Scholar 

  32. A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som, Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115(8), 1125–1131 (2007)

    Article  Google Scholar 

  33. P. Liu, Modifications of carbon nanotubes with polymers. Eur. Polym. J. 41(11), 2693–2703 (2005)

    Article  Google Scholar 

  34. R. Atif, F. Inam, Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 7, 1174–1196 (2016)

    Article  Google Scholar 

  35. N. Nakashima, Soluble carbon nanotubes. Int. J. Nanosci. 4, 119–137 (2005)

    Article  Google Scholar 

  36. H. Murakami, N. Nakashima, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechnol. 6, 16–27 (2006)

    Google Scholar 

  37. Y. Yun, Z. Dong, V. Shanov, W.R. Heineman, H.B. Halsall, A. Bhattacharya, L. Conforti, M.J. Schulz, Nanotube electrodes and biosensors. Nano Today 2(6), 30–37 (2007)

    Article  Google Scholar 

  38. F. Torrens, G. Castellano, Effect of packing on the cluster nature of C nanotubes: An information entropy analysis. Microelectron. J. 38(12), 1109–1122 (2007)

    Article  Google Scholar 

  39. M. Jama, T. Singh, S.M. Gamaleldin, M. Koc, A. Samara, R.J. Isaifan, M.A. Atieh, Critical review on nanofluids: Preparation, characterization, and applications. J. Nanomater. 2016, 22 (2016.) Article ID 6717624

    Article  Google Scholar 

  40. M.S. Patil, J.-H. Seo, S.-K. Kang, M.-Y. Lee, Review on synthesis, thermo-physical property, and heat transfer mechanism of nanofluids. Energies 9, 840 (2016.) 17 pp

    Article  Google Scholar 

  41. C. Kleinstreuer, Z. Xu, Mathematical modeling and computer simulations of nanofluid flow with applications to cooling and lubrication. Fluids 1, 16 (2016.) 33 pp

    Article  Google Scholar 

  42. S.S.J. Aravinda, S. Ramaprabhu, Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 3, 4199–4206 (2013)

    Article  Google Scholar 

  43. S. Delfani, M. Karami, M.A.A. Akhavan Bahabadi, Experimental investigation on performance comparison of nanofluidbased direct absorption and flat plate solar collectors. Int. J. Nano Dimens. 7(1), 85–96 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kharissova, O.V., Kharisov, B.I. (2017). Introduction. In: Solubilization and Dispersion of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-62950-6_1

Download citation

Publish with us

Policies and ethics