Advertisement

Performance Aspects of Collocated and Staggered Grids for Particle-in-Cell Plasma Simulation

  • Sergey Bastrakov
  • Igor Surmin
  • Evgeny Efimenko
  • Arkady Gonoskov
  • Iosif MeyerovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10421)

Abstract

We present a computational comparison of collocated and staggered uniform grids for particle-in-cell plasma simulation. Both types of grids are widely used, and numerical properties of the corresponding solvers are well-studied. However, for large-scale simulations performance is also an important factor, which is the focus of this paper. We start with a baseline implementation, apply widely-used techniques for performance optimization and measure their efficacy for both grids on a high-end Xeon CPU and a second-generation Xeon Phi processor. For the optimized version the collocated grid outperforms the staggered one by about 1.5 x on both Xeon and Xeon Phi. The speedup on the Xeon Phi processor compared to Xeon is about 1.9 x.

Keywords

Performance optimization Xeon Phi SIMD Plasma simulation Particle-in-cell 

Notes

Acknowledgements

The authors (E.E., A.G.) acknowledge the support from the Russian Science Foundation project No. 16-12-10486. The authors are grateful to Intel Corporation for access to the system used for performing computational experiments presented in this paper. We are also grateful to A. Bobyr, S. Egorov, I. Lopatin, and Z. Matveev from Intel Corporation for technical consultations.

References

  1. 1.
    Fonseca, R.A., Vieira, J., Fiuza, F., Davidson, A., Tsung, F.S., Mori, W.B., Silva, L.O.: Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Control. Fusion. 55(12), 124011 (2013)CrossRefGoogle Scholar
  2. 2.
    Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15(5), 055703 (2008)CrossRefGoogle Scholar
  3. 3.
    Vay, J.-L., Bruhwiler, D.L., Geddes, C.G.R., Fawley, W.M., Martins, S.F., Cary, J.R., Cormier-Michel, E., Cowan, B., Fonseca, R.A., Furman, M.A., Lu, W., Mori, W.B., Silva, L.O.: Simulating relativistic beam and plasma systems using an optimal boosted frame. J. Phys. Conf. Ser. 180(1), 012006 (2009)CrossRefGoogle Scholar
  4. 4.
    Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical models on MIMD-multicomputers. Future Gener. Comp. Syst. 17, 755–765 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bastrakov, S., Donchenko, R., Gonoskov, A., Efimenko, E., Malyshev, A., Meyerov, I., Surmin, I.: Particle-in-cell plasma simulation on heterogeneous cluster systems. J. Comput. Sci. 3, 474–479 (2012)CrossRefGoogle Scholar
  6. 6.
    Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm, U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839 (2010)CrossRefGoogle Scholar
  7. 7.
    Decyk, V.K., Singh, T.V.: Particle-in-cell algorithms for emerging computer architectures. Comput. Phys. Commun. 185(3), 708–719 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Nakashima, H.: Manycore challenge in particle-in-cell simulation: how to exploit 1 TFlops peak performance for simulation codes with irregular computation. Comput. Electr. Eng. 46, 81–94 (2015)CrossRefGoogle Scholar
  9. 9.
    Surmin, I.A., Bastrakov, S.I., Efimenko, E.S., Gonoskov, A.A., Korzhimanov, A.V., Meyerov, I.B.: Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors. Comput. Phys. Commun. 202, 204–210 (2016)CrossRefGoogle Scholar
  10. 10.
    Surmin, I., Bastrakov, S., Matveev, Z., Efimenko, E., Gonoskov, A., Meyerov, I.: Co-design of a Particle-in-Cell plasma simulation code for Intel Xeon Phi: a first look at knights landing. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp. 319–329. Springer, Cham (2016). doi: 10.1007/978-3-319-49956-7_25 CrossRefGoogle Scholar
  11. 11.
    Vincenti, H., Lehe, R., Sasanka, R., Vay, J.-L.: An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes. Comput. Phys. Commun. 210, 145–154 (2017)CrossRefGoogle Scholar
  12. 12.
    Godfrey, B.B., Vay, J.-L., Haber, I.: Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm. J. Comput. Phys. 258, 689–704 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Vincenti, H., Vay, J.-L.: Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver. Comput. Phys. Commun. 200, 147–167 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)CrossRefzbMATHGoogle Scholar
  15. 15.
    Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, London (1995)zbMATHGoogle Scholar
  16. 16.
    Haber, I., Lee, R., Klein, H., Boris, J.: Advances in electromagnetic simulation techniques. In: Proceedings of the Sixth Conference on Numerical Simulation of Plasmas, pp. 46–48 (1973)Google Scholar
  17. 17.
    Liu, Q.: The Pstd algorithm: a time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett. 15(3), 158–165 (1997)CrossRefGoogle Scholar
  18. 18.
    Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-Hill, New York (1981)zbMATHGoogle Scholar
  19. 19.
    Birdsal, C., Langdon, A.: Plasma Physics via Computer Simulation. Taylor & Francis Group, New York (2005)Google Scholar
  20. 20.
    Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I., Muraviev, A., Sergeev, A., Surmin, I., Wallin, E.: Extended Particle-in-Cell schemes for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92, 023305 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sergey Bastrakov
    • 1
  • Igor Surmin
    • 1
  • Evgeny Efimenko
    • 1
    • 2
  • Arkady Gonoskov
    • 1
    • 2
    • 3
  • Iosif Meyerov
    • 1
    Email author
  1. 1.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia
  2. 2.Institute of Applied Physics of the Russian Academy of SciencesNizhni NovgorodRussia
  3. 3.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations