Skip to main content

Performance Aspects of Collocated and Staggered Grids for Particle-in-Cell Plasma Simulation

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10421))

Included in the following conference series:

Abstract

We present a computational comparison of collocated and staggered uniform grids for particle-in-cell plasma simulation. Both types of grids are widely used, and numerical properties of the corresponding solvers are well-studied. However, for large-scale simulations performance is also an important factor, which is the focus of this paper. We start with a baseline implementation, apply widely-used techniques for performance optimization and measure their efficacy for both grids on a high-end Xeon CPU and a second-generation Xeon Phi processor. For the optimized version the collocated grid outperforms the staggered one by about 1.5 x on both Xeon and Xeon Phi. The speedup on the Xeon Phi processor compared to Xeon is about 1.9 x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fonseca, R.A., Vieira, J., Fiuza, F., Davidson, A., Tsung, F.S., Mori, W.B., Silva, L.O.: Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Control. Fusion. 55(12), 124011 (2013)

    Article  Google Scholar 

  2. Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15(5), 055703 (2008)

    Article  Google Scholar 

  3. Vay, J.-L., Bruhwiler, D.L., Geddes, C.G.R., Fawley, W.M., Martins, S.F., Cary, J.R., Cormier-Michel, E., Cowan, B., Fonseca, R.A., Furman, M.A., Lu, W., Mori, W.B., Silva, L.O.: Simulating relativistic beam and plasma systems using an optimal boosted frame. J. Phys. Conf. Ser. 180(1), 012006 (2009)

    Article  Google Scholar 

  4. Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical models on MIMD-multicomputers. Future Gener. Comp. Syst. 17, 755–765 (2001)

    Article  MATH  Google Scholar 

  5. Bastrakov, S., Donchenko, R., Gonoskov, A., Efimenko, E., Malyshev, A., Meyerov, I., Surmin, I.: Particle-in-cell plasma simulation on heterogeneous cluster systems. J. Comput. Sci. 3, 474–479 (2012)

    Article  Google Scholar 

  6. Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm, U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839 (2010)

    Article  Google Scholar 

  7. Decyk, V.K., Singh, T.V.: Particle-in-cell algorithms for emerging computer architectures. Comput. Phys. Commun. 185(3), 708–719 (2014)

    Article  MathSciNet  Google Scholar 

  8. Nakashima, H.: Manycore challenge in particle-in-cell simulation: how to exploit 1 TFlops peak performance for simulation codes with irregular computation. Comput. Electr. Eng. 46, 81–94 (2015)

    Article  Google Scholar 

  9. Surmin, I.A., Bastrakov, S.I., Efimenko, E.S., Gonoskov, A.A., Korzhimanov, A.V., Meyerov, I.B.: Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors. Comput. Phys. Commun. 202, 204–210 (2016)

    Article  Google Scholar 

  10. Surmin, I., Bastrakov, S., Matveev, Z., Efimenko, E., Gonoskov, A., Meyerov, I.: Co-design of a Particle-in-Cell plasma simulation code for Intel Xeon Phi: a first look at knights landing. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp. 319–329. Springer, Cham (2016). doi:10.1007/978-3-319-49956-7_25

    Chapter  Google Scholar 

  11. Vincenti, H., Lehe, R., Sasanka, R., Vay, J.-L.: An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes. Comput. Phys. Commun. 210, 145–154 (2017)

    Article  Google Scholar 

  12. Godfrey, B.B., Vay, J.-L., Haber, I.: Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm. J. Comput. Phys. 258, 689–704 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vincenti, H., Vay, J.-L.: Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver. Comput. Phys. Commun. 200, 147–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

  15. Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, London (1995)

    MATH  Google Scholar 

  16. Haber, I., Lee, R., Klein, H., Boris, J.: Advances in electromagnetic simulation techniques. In: Proceedings of the Sixth Conference on Numerical Simulation of Plasmas, pp. 46–48 (1973)

    Google Scholar 

  17. Liu, Q.: The Pstd algorithm: a time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett. 15(3), 158–165 (1997)

    Article  Google Scholar 

  18. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-Hill, New York (1981)

    MATH  Google Scholar 

  19. Birdsal, C., Langdon, A.: Plasma Physics via Computer Simulation. Taylor & Francis Group, New York (2005)

    Google Scholar 

  20. Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I., Muraviev, A., Sergeev, A., Surmin, I., Wallin, E.: Extended Particle-in-Cell schemes for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92, 023305 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors (E.E., A.G.) acknowledge the support from the Russian Science Foundation project No. 16-12-10486. The authors are grateful to Intel Corporation for access to the system used for performing computational experiments presented in this paper. We are also grateful to A. Bobyr, S. Egorov, I. Lopatin, and Z. Matveev from Intel Corporation for technical consultations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Meyerov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bastrakov, S., Surmin, I., Efimenko, E., Gonoskov, A., Meyerov, I. (2017). Performance Aspects of Collocated and Staggered Grids for Particle-in-Cell Plasma Simulation. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2017. Lecture Notes in Computer Science(), vol 10421. Springer, Cham. https://doi.org/10.1007/978-3-319-62932-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62932-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62931-5

  • Online ISBN: 978-3-319-62932-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics