Skip to main content

Accelerated Analysis of Biological Parameters Space Using GPUs

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10421))

Included in the following conference series:

Abstract

Mathematical modeling and computer simulation represent a valuable mean to integrate experimental research for the study of biological systems. However, many computational methods—e.g., sensitivity analysis—require the execution of a massive number of simulations to investigate the model behavior in physiological or perturbed conditions, which can be a computationally challenging task. This huge amount of simulations is necessary to collect data in the vast space of kinetic parameters. This paper provides the state-of-the-art of biochemical simulators relying on Graphics Processing Units (GPUs) in the context of Systems Biology. Moreover, we discuss two examples of integration of such simulators into computational methods for parameter sweep and sensitivity analysis, both implemented using the Python language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Simulations can also be extended to keep track of the spatial positioning of species, which is mandatory in the case of biological system whose components are not uniformly distributed in the reaction volume or its compartments. Spatial simulation will not be discussed in this paper.

  2. 2.

    Notably, the creation of the figure required approximatively 3 min.

References

  1. Cazzaniga, P., Damiani, C., Besozzi, D., Colombo, R., Nobile, M.S., Gaglio, D., Pescini, D., Molinari, S., Mauri, G., Alberghina, L., Vanoni, M.: Computational strategies for a system-level understanding of metabolism. Metabolites 4, 1034–1087 (2014)

    Article  Google Scholar 

  2. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Analysis, Global Sensitivity Analysis: The Primer. Wiley-Interscience, Hoboken (2008)

    MATH  Google Scholar 

  3. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13(11), 2467–2474 (2003)

    Article  Google Scholar 

  4. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: A GPU-based multi-swarm PSO method for parameter estimation in stochastic biological systems exploiting discrete-time target series. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 74–85. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29066-4_7

    Chapter  Google Scholar 

  5. Nvidia: Nvidia CUDA C Programming Guide 8.0 (2016)

    Google Scholar 

  6. Bland, A.S., Wells, J.C., Messer, O.E., et al.: Titan: early experience with the Cray XK6 at oak ridge national laboratory. In: Proceedings of Cray User Group Conference (CUG 2012) (2012)

    Google Scholar 

  7. Nobile, M.S., Cazzaniga, P., Tangherloni, A., Besozzi, D.: Graphics processing units in bioinformatics, computational biology and systems biology. Brief. Bioinform. (2016)

    Google Scholar 

  8. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Comput. Phys. 81, 2340–2361 (1977)

    Google Scholar 

  9. Wolkenhauer, O., Ullah, M., Kolch, W., Kwang-Hyun, C.: Modeling and simulation of intracellular dynamics: choosing an appropriate framework. IEEE Trans. Nanobiosci. 3(3), 200–207 (2004)

    Article  Google Scholar 

  10. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  11. Petzold, L.: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. Stat. Comput. 4, 136–148 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wilkinson, D.: Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 10(2), 122–133 (2009)

    Article  Google Scholar 

  13. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)

    Article  Google Scholar 

  14. Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J. Chem. Phys. 119, 12784–12794 (2003)

    Article  Google Scholar 

  15. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124(4), 044109 (2006)

    Article  Google Scholar 

  16. Re, A., Caravagna, G., Pescini, D., Nobile, M.S., Cazzaniga, P.: Approximate simulation of chemical reaction systems with micro, meso and macro-scales. In: Proceedings of the 13th International Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB2016) (2016)

    Google Scholar 

  17. Harris, L.A., Clancy, P.: A “partitioned leaping” approach for multiscale modeling of chemical reaction dynamics. J. Chem. Phys. 125(14), 144107 (2006)

    Article  Google Scholar 

  18. Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122(5), 054103 (2005)

    Article  Google Scholar 

  19. Ackermann, J., Baecher, P., Franzel, T., Goesele, M., Hamacher, K.: Massively-parallel simulation of biochemical systems. In: Proceedings of Massively Parallel Computational Biology on GPUs, Jahrestagung der Gesellschaft für Informatik e.V, pp. 739–750 (2009)

    Google Scholar 

  20. Zhou, Y., Liepe, J., Sheng, X., Stumpf, M.P.H., Barnes, C.: GPU accelerated biochemical network simulation. Bioinformatics 27(6), 874–876 (2011)

    Article  Google Scholar 

  21. Hoops, S., Sahle, S., Gauges, R., et al.: COPASI - a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006)

    Article  Google Scholar 

  22. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G.: GPU-accelerated simulations of mass-action kinetics models with cupSODA. J. Supercomputing 69(1), 17–24 (2014)

    Article  Google Scholar 

  23. Tangherloni, A., Nobile, M.S., Besozzi, D., Mauri, G., Cazzaniga, P.: LASSIE: simulating large-scale models of biochemical systems on GPUs. BMC Bioinform. 18(1), 246 (2017)

    Article  Google Scholar 

  24. Li, H., Petzold, L.R.: Efficient parallelization of the stochastic simulation algorithm for chemically reacting systems on the graphics processing unit. Int. J. High Perform. Comput. Appl. 24(2), 107–116 (2010)

    Article  Google Scholar 

  25. Sumiyoshi, K., Hirata, K., Hiroi, N., et al.: Acceleration of discrete stochastic biochemical simulation using GPGPU. Front. Physiol. 6(42) (2015)

    Google Scholar 

  26. Komarov, I., D’Souza, R.M.: Accelerating the gillespie exact stochastic simulation algorithm using hybrid parallel execution on graphics processing units. PLoS ONE 7(11), e46693 (2012)

    Article  Google Scholar 

  27. Gillespie, D.T., Petzold, L.R.: Improved leap-size selection for accelerated stochastic simulation. J. Chem. Phys. 119, 8229–8234 (2003)

    Article  Google Scholar 

  28. Komarov, I., D’Souza, R.M., Tapia, J.: Accelerating the gillespie \(\tau \)-leaping method using graphics processing units. PLoS ONE 7(6), e37370 (2012)

    Article  Google Scholar 

  29. Nobile, M.S., Cazzaniga, P., Besozzi, D., et al.: cuTauLeaping: a GPU-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems. PLoS ONE 9(3), e91963 (2014)

    Article  Google Scholar 

  30. Wilhelm, T.: The smallest chemical reaction system with bistability. BMC Syst. Biol. 3(1), 90 (2009)

    Article  Google Scholar 

  31. Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis for chemical models. Chem. Rev. 105, 2811–2827 (2005)

    Article  MATH  Google Scholar 

  32. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)

    Article  Google Scholar 

  33. Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 22(10), 1509–1518 (2007). Modelling, computer-assisted simulations, and mapping of dangerous phenomena for hazard assessment

    Article  Google Scholar 

  34. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181(2), 259–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sobol, I.M., Kucherenko, S.: Derivative based global sensitivity measures and their link with global sensitivity indices. Math. Comput. Simul. 79(10), 3009–3017 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Usher, W., Herman, J., Whealton, C., Hadka, D.: Salib/salib: Launch!, October 2016

    Google Scholar 

  37. Degasperi, A., Gilmore, S.: Sensitivity analysis of stochastic models of bistable biochemical reactions. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 1–20. Berlin, Heidelberg (2008). doi:10.1007/978-3-540-68894-5_1

    Chapter  Google Scholar 

  38. Nobile, M.S., Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Reverse engineering of kinetic reaction networks by means of cartesian genetic programming and particle swarm optimization. In: 2013 IEEE Congress on Evolutionary Computation, vol. 1, pp. 1594–1601. IEEE (2013)

    Google Scholar 

  39. Koza, J.R., Mydlowec, W., Lanza, G., Yu, J., Keane, M.A.: Automatic computational discovery of chemical reaction networks using genetic programming. In: Džeroski, S., Todorovski, L. (eds.) Computational Discovery of Scientific Knowledge. LNCS, vol. 4660, pp. 205–227. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73920-3_10

    Chapter  Google Scholar 

  40. Cumbo, F., Nobile, M.S., Damiani, C., Colombo, R., Mauri, G., Cazzaniga, P.: COSYS: computational systems biology infrastructure. In: Proceedings of the 13th International Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB2016) (2016)

    Google Scholar 

  41. Nvidia: nvGRAPH v8.0 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco S. Nobile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nobile, M.S., Mauri, G. (2017). Accelerated Analysis of Biological Parameters Space Using GPUs. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2017. Lecture Notes in Computer Science(), vol 10421. Springer, Cham. https://doi.org/10.1007/978-3-319-62932-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62932-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62931-5

  • Online ISBN: 978-3-319-62932-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics