Advertisement

Scalable Computations of GeRa Code on the Base of Software Platform INMOST

  • Igor KonshinEmail author
  • Ivan Kapyrin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10421)

Abstract

The hydrogeological modeling code GeRa is based on INMOST software platform, which operates with distributed mesh data and allows to assemble and solve the system of linear equations. The set of groundwater flow models with filtration, transport, and chemical processes are considered. The comparison of parallel efficiency for different linear solvers in the INMOST framework is performed. The analysis of scalability of GeRa code on different computer platforms from multicore laptop to Lomonosov supercomputer is presented.

Keywords

Numerical modelling Software platform Distributed meshes Subsurface flow and transport 

Notes

Acknowledgements

The authors express their gratitude to V. Kramarenko for his permanent assistance with assembling the GeRa code, for installing GeRa on different computer platforms, and for generating the model sets from the GeRa verification tests.

References

  1. 1.
    Aavatsmark, I., Barkve, T., Boe, O., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anizotropic media. Part I: derivation of the methods. SIAM J. Sci. Comput. 19(5), 1700–1716 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Danilov, A., Vassilevski, Y.: A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Russ. J. Numer. Anal. Math. Model. 24(3), 207–227 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kapyrin, I., Nikitin, K., Terekhov, K., Vassilevski, Y.: Nonlinear monotone FV schemes for radionuclide geomigration and multiphase flow models. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds.) Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Springer Proceedings in Mathematics & Statistics, vol. 78, pp. 655–663. Springer, Berlin (2014)Google Scholar
  4. 4.
    Plenkin, A.V., Chernyshenko, A.Y., Chugunov, V.N., Kapyrin, I.V.: Adaptive unstructured mesh generation methods for hydrogeological problems. Vychisl. Metody Program. 16(4), 518–533 (2015)Google Scholar
  5. 5.
    Charlton, S.R., Parkhurst, D.L.: Modules based on the geochemical model PHREEQC for use in scripting and programming languages. Comput. Geosci. 37(10), 1653–1663 (2011)CrossRefGoogle Scholar
  6. 6.
    Boldyrev, K.A., Kapyrin, I.V., Konstantinova, L.I., Zakharova, E.V.: Simulation of strontium sorption onto rocks at high concentrations of sodium nitrate in the solution. Radiochemistry 58(3), 243–251 (2016)CrossRefGoogle Scholar
  7. 7.
    INMOST: a toolkit for distributed mathematical modelling. URL: http://www.inmost.org
  8. 8.
    Vassilevski, Y.V., Konshin, I.N., Kopytov, G.V., Terekhov, K.M.: INMOST - a software platform and a graphical environment for development of parallel numerical models on general meshes, 144 pp. Moscow State University Publication, Moscow (2013) (in Russian)Google Scholar
  9. 9.
    Kaporin, I.E.: High quality preconditioning of a general symmetric positive definite matrix based on its \(U^TU+U^TR+R^TU\)-decomposition. Numer. Lin. Alg. Applic. 5(6), 483–509 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    PETSc - Portable, Extensible Toolkit for Scientific Computation. https://www.mcs.anl.gov/petsc
  11. 11.
    Kaporin, I.E., Konshin, I.N.: Parallel solution of large sparse SPD linear systems based on overlapping domain decomposition. In: Malyshkin, V. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 436–446. Springer, Heidelberg (1999). doi: 10.1007/3-540-48387-X_45 CrossRefGoogle Scholar
  12. 12.
    Kaporin, I.E., Konshin, I.N.: Load balancing of parallel block overlapped incomplete cholesky preconditioning. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 304–315. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03275-2_30 CrossRefGoogle Scholar
  13. 13.
    INM RAS cluster. http://cluster2.inm.ras.ru (in Russian)
  14. 14.
    "Lomonosov" supercomputer. https://parallel.ru/cluster/lomonosov.html (in Russian)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Numerical Mathematics of the Russian Academy of SciencesMoscowRussia
  2. 2.Nuclear Safety Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations